Abstract of “A Framework for Speech Source Localization Using Sensor Arrays,” by
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Electronically steerable arrays of microphones have a variety of uses in speech data ac-
quisition systems. Applications include teleconferencing, speech recognition and speaker
identification, sound capture in adverse environments, and biomedical devices for the hear-
ing impaired. An array of microphones has a number of advantages over a single-microphone
system. It may be electronically aimed to provide a high-quality signal from a desired source
location while simultaneously attenuating interfering talkers and ambient noise, does not
necessitate local placement of transducers or encumber the talker with a hand-held or
head-mounted microphone, and does not require physical movement to alter its direction
of reception. Additionally, it has capabilities that a single microphone does not; namely
automatic detection, localization, and tracking of active talkers in its receptive area. A
fundamental requirement of sensor array systems is the ability to locate and track a speech
source. An accurate fix on the primary talker, as well as knowledge of any interfering talk-
ers or coherent noise sources, is necessary to effectively steer the array. Source location
data may also be used for purposes other than beamforming; e.g. aiming a camera in a
video-conferencing system. In addition to high accuracy, the location estimator must be
capable of a high update rate as well as being computationally non-demanding in order to
be useful for real-time tracking and beamforming applications.

This thesis addresses the specific application of source localization algorithms for es-
timating the position of speech sources in a real room environment given limited compu-

tational resources. The theoretical foundations of a speech source localization system are



presented. This includes the development of a source-sensor geometry for talkers and sensors
in the near-field environment, the evaluation of several error criteria available to the prob-
lem, and the detailing of source detection and estimate-error prediction methods. Several
practical algorithms necessary for real-time implementation are then developed, specifically
the derivation and evaluation of an appropriate time-delay estimator and a novel closed-
form locator. Finally, results obtained from several real systems are presented to illustrate
the effectiveness of the proposed source localization techniques as well as to confirm the

practicality of the theoretical models.
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Chapter 1

Background, Motivation, and

Scope

1.1 Sensor Arrays for Speech-Related Applications

A steerable array of microphones has the potential to replace the traditional head-mounted
or desk-stand microphone as the input transducer system for acquiring speech data in many
applications. An array of microphones has a number of advantages over a single-microphone
system. First, it may be electronically aimed to provide a high-quality signal from a desired
source location while it simultaneously attenuates interfering talkers and ambient noise. In
this regard, an array has the potential to outperform a single, well-aimed, highly-directional
microphone. Second, an array system does not necessitate local placement of transducers,
will not encumber the talker with a hand-held or head-mounted microphone, and does
not require physical movement to alter its direction of reception. These features make it
advantageous in settings involving multiple or moving sources. Finally, it has potential

capabilities that a single microphone does not; namely automatic detection, location, and



tracking of active talkers in its receptive area. Existing array systems have been used in a
number of applications. These include teleconferencing [1, 2, 3, 4], speech recognition [5, 6,
7, 8], speaker identification [9], speech acquisition in an automobile environment [10, 11],
sound capture in reverberant enclosures [12, 13, 14], large-room recording-conferencing [15],
acoustic surveillance [16, 17], and hearing aid devices [18]. These systems also have the
potential to be beneficial in several other environments, the performing arts and sporting
communities, for instance.

An essential requirement of these sensor array systems is the ability to locate and track
a speech source. For audio-based applications, an accurate fix on the primary talker, as well
as knowledge of any interfering talkers or coherent noise sources, is necessary to effectively
steer the array, enhancing a given source while simultaneously attenuating those deemed
undesirable. Location data may be used as a guide for discriminating individual speakers
in a multi-source scenario. With this information available, it would then be possible to
automatically focus upon and follow a given source on an extended basis. Of particular
interest lately, is the application of the speaker location estimates for aiming a camera or
series of cameras in a video-conferencing system. In this regard, the automated localization
information eliminates the need for a human or number of human camera operators.

In addition to high accuracy, these delay estimates must be updated frequently in order
to be useful in practical tracking and beamforming applications. Consider the problem
of beamforming to a moving speech source. It has been shown that for sources in close
proximity to the microphones, the array aiming location must be accurate to within a
few centimeters to prevent high-frequency rolloff in the received signal [19]. An effective
beamformer must therefore be capable of including a continuous and accurate location

procedure within its algorithm. This requirement necessitates the use of a location estimator



capable of fine resolution at a high update rate. Additionally, any such estimator would

have to be computationally non-demanding to make it practical for real-time systems.

1.2 Source Localization Strategies

Existing source localization procedures may be loosely divided into three general cate-
gories: those based upon maximizing the output power of a steered-beamformer, techniques
adopting high-resolution spectral estimation concepts, and approaches employing only time-
difference of arrival (TDOA) information. These broad classifications are delineated by their
application environment and method of estimation. The first refers to any situation where
the location estimate is derived directly from a filtered, weighted, and summed version of
the signal data received at the sensors. The second will be used to term any localization
scheme relying upon an application of the signal correlation matrix. The last category in-
cludes procedures which calculate source locations from a set of delay estimates measured

across various combinations of sensors.

1.2.1 Steered-Beamformer-Based Locators

The first categorization applies to passive arrays for which the system input is an acoustic
signal produced by the source. The optimal Maximum Likelihood (ML) location estima-
tor in this situation amounts to a focused beamformer which steers the array to various
locations and searches for a peak in output power. Termed ‘focalization’, derivations of the
optimality of the procedure and variations thereof are presented in [20, 21, 22]. Theoreti-
cal and practical variance bounds obtained via focalization are detailed in [20, 21, 23] and
the steered-beamformer approach was been extended to the case of multiple-signal sources

n [24]. The optimality of each of these procedures is dependent upon a priori knowledge of



the spectral content of both the primary signal and background noise. However, in practice
this information is rarely available. The physical realization of the ML estimator requires
the solution of a nonlinear optimization problem. The use of standard iterative optimiza-
tion methods, such as steepest descent and Newton-Raphson, for this process was addressed
by [24]. A shortcoming of each of these approaches is that the objective function to be min-
imized does not have a strong global peak and frequently contains several local maxima. As
a result, this genre of efficient search methods is often inaccurate and extremely sensitive
to the initial search location. In [25] an optimization method appropriate for a multimodal
objective function, Stochastic Region Contraction (SRC), was applied specifically to the
talker localization problem. While improving the robustness of the location estimate, the
resulting search method involved an order of magnitude more evaluations of the objective
function in comparison to the less robust search techniques. Overall, the computational re-
quirements of the focalization-based ML estimator, namely the complexity of the objective
function itself as well as the relative inefficiency of an appropriate optimization procedure,
prohibit its use in the majority of practical, real-time source locators.

The practical shortcomings of applying correlation-based localization estimation tech-
niques without a great deal of intelligent pruning is typified by the system produced in [26].
In this work a sub-optimal version of the ML steered-beamformer estimator was adapted
for the talker-location problem. A source localization algorithm based on multirate inter-
polation of the sum of cross-correlations of many microphone pairs was implemented in
conjunction with a real-time beamformer. However, because of the computational require-
ments of the procedure, it was not possible to obtain the accuracy and update rate required

for effective beamforming in real-time given the hardware available.



1.2.2 High-Resolution Spectral-Estimation-Based Locators

This second categorization of location estimation techniques includes the modern beamform-
ing methods adapted from the field of high-resolution spectral analysis: autoregressive (AR)
modeling, minimum variance (MV) spectral estimation, and the variety of eigenanalysis-
based techniques (of which the popular MUSIC algorithm is an example). Detailed sum-
maries of these approaches may be found in [27, 28]. While these approaches have suc-
cessfully found their way into a variety of array processing applications, they all possess
certain restrictions that have been found to limit their effectiveness with the speech-source
localization problem addressed here.

Each of these high-resolution processes is based upon the spatiospectral correlation ma-
trix derived from the signals received at the sensors. When exact knowledge of this matrix
is unknown (which is most always the case), it must be estimated from the observed data.
This is done via ensemble averaging of the signals over an interval in which the sources and
noise are assumed to be statistically stationary and their estimation parameters (location
in this case) are assumed to be fixed. For speech sources, fulfilling these conditions while
allowing sufficient averaging can be very problematic in practice. These algorithms tend to
be significantly less robust to source and sensor modeling errors than conventional beam-
forming methods [29, 30]. The incorporated models typically assume ideal source radiators,
uniform sensor channel characteristics, and exact knowledge of the sensor positions. Such
conditions are impossible to obtain in real-world environments. While the sensitivity of
these high-resolution methods to the modeling assumptions may be reduced, it is at the
cost of performance. Additionally, signal coherence, such as that created by a multipath
condition, is detrimental to algorithmic performance, particularly that of the eigenanalysis

approaches. This situation may be improved via signal processing resources, but again at



the cost of decreased resolution[31]. With regard to the localization problem at hand, these
methods were developed in the context of far-field plane waves projecting onto a linear ar-
ray. While the MV and MUSIC algorithms have been shown to be extendible to the case of
general array geometries and near-field sources [32], the AR model and certain eigenanalysis
approaches are limited to the far-field, uniform linear array situation. Finally, there arises
the issue of computational expense. A search of the location space is required in each of
these scenarios. While the computational complexity at each iteration is not as demanding
as the case of the steered-beamformer, the objective space typically consists of sharp peaks.
This property precludes the use of iteratively efficient optimization methods. The situation
is compounded if a more complex source model is adopted (incorporating source orienta-
tion or head radiator effects, for instance) in an effort to improve algorithm performance.
Additionally, it should be noted that these high-resolution methods are all designed for
narrowband signals. They can be extended to wideband signals, including speech, either
through simple serial application of the narrowband methods or more sophisticated gen-
eralizations of these approaches, such as [33, 34, 35]. Either of these routes extends the

computational requirements considerably.

1.2.3 TDOA-Based Locators

With this third localization strategy, the measure in question is not the acoustic data re-
ceived by the sensors, but rather a set of relative delay estimates derived from the time
signals. This approach to finding a source location has been adopted for a variety of appli-
cations where a single source may be assumed to be present in the operating environment.
These applications range from navigational systems [36, 37] where the TDOA information

is calculated from clocking signals transmitted from various known transmitter positions to



sonar devices [38] in which the time delays must be estimated from underwater acoustic
signals detected by passive hydrophones. For the locators in this class, the TDOA and
sensor position data are used to generate hyperbolic curves which are then intersected in
some optimal sense to arrive at a source location estimate. A number of variations on this
principle have been developed [39, 40, 41, 42, 43, 44, 45, 46]. They differ considerably in the
method of derivation, the extent of their applicability (2-D vs. 3-D, near source vs. distant
source, etc.), and their means of solution.

Given solely a set of TDOA figures with known error statistics, obtaining the ML loca-
tion estimate necessitates solving a set of nonlinear equations. The calculation of this result
can be quite cumbersome and computationally expensive, though considerably less so in
either of these respects than estimators belonging to the two previously discussed genres.
An exact solution is given in [47] for the situation where the number of TDOA estimates
is equal to the number of spatial dimensions. However, this solution does not accommo-
date extra sensor measurements. Iterative methods which start with an initial guess and
successively approximate the optimal solution via a local linear least-square (LLS) estimate
at each step in the procedure exist [48, 49, 40]. These methods require an LLS matrix
calculation at each iteration, are not guaranteed to converge in many instances, and tend
to be sensitive to the choice of an initial guess. Finally, there is an extensive class of sub-
optimal, closed-form location estimators [39, 41, 42, 43, 44, 45, 46, 50, 51, 52, 53, 54, 55]
designed to approximate the exact solution to the nonlinear problem. These techniques are
computationally undemanding and, in many cases, suffer little detriment in performance
relative to their more compute-intensive counterparts.

Regardless of the solution method employed, this third class of location estimation

techniques possesses a significant computational advantage over the steered-beamformer or



high-resolution spectral-estimation based approaches. However, TDOA-based locators do
present several disadvantages when used as the basis of a general localization scheme. For
the case of acoustic sources where a time signal is available, this two-stage process requiring
time-delay estimation prior to the actual location evaluation is suboptimal. The intermedi-
ate signal parameterization accomplished by the TDOA procedure represents a significant
data reduction at the expense of a decrease in theoretical localization performance. However,
in real situations the performance advantage inherent in the optimal steered-beamformer
estimator is lessened because of incomplete knowledge of the signal and noise spectral con-
tent as well as unrealistic stationarity assumptions. In practice, the computational savings
afforded by these less intensive procedures can far outweigh the moderate decline in pre-
cision. The primary limitation of delay-based locators is their inability to accommodate
multi-source scenarios. These algorithms assume a single-source model. The presence of
several simultaneous radiators and/or coherent noise sources in the sensor field typically
results in ill-defined TDOA figures and unreliable location fixes. A TDOA-based locator
operating in such an environment would require a means for evaluating the validity and

accuracy of the delay and location estimates.

1.3 Elements of the Speech-Source Localization Problem

This thesis addresses the specific application of source localization algorithms for estimating
the position of one or more speech sources in a real-room environment. It is assumed that
limited degree of computational resources are available and that the quantity and placement
of the sensors are constrained.

A speech source, whether associated with a human talker or mechanical transducer, does

not represent an ideal, spherical radiator. In the case of a room-size, near-field environment,



any realistic source possesses a clear degree of directionality and spatial attenuation. This
implies that a sensor which the talker is facing will tend to receive a stronger signal than
those off to the side or physically behind the source. Similarly, remote sensors will be
exposed to a relatively attenuated signal by virtue of the additional propagation distance.
Other more subtle factors, such as the room acoustics, non-uniformity of the sensor channels,
features of the talker’s head and body, as well as the actual content of the speech can
introduce deviations from the ideal radiator case and pose serious difficulties to accurately
modeling the speech sources.

The computational liabilities and the inability to realistically model the speech sources
under a wide variety of conditions prevent the use of either of the first two genres of
source locators discussed for this scenario. The approach taken throughout this work will
be to employ a two-stage localization procedure; delay estimation followed by a location
evaluation. Although Chapter 8 presents a delay estimator specifically intended for this
speech source environment, the majority of this thesis will focus on the latter process
assuming that the TDOA figures are already available. Studying the problem from this
perspective has several clear advantages over the stated alternatives. It is computationally
non-intensive and may be parallelized in a straightforward manner. By not being overly
dependent upon specific modeling conditions, it is robust and applicable to a range of
situations. Furthermore, as will be demonstrated, the shortcomings associated with these
techniques, most notably the difficulties with multiple coherent sources, may be overcome
in practice through judicious use of appropriate detection methods at each stage in the
process.

Each of the localization methods to be presented are based upon a specific source-

sensor geometry; the basic unit of which consists of a pair of closely-spaced sensors and a



single delay estimate associated with the potential source. Delay estimates are evaluated
exclusively with respect to the particular sensor pair. There is no attempt made to define
TDOA values relative to a single reference sensor or an absolute scale. This philosophy
is motivated by several arguments. Primarily, in a near-field source environment such as
this, source directionality can create significant signal dissimilarities at spatially distant
sensors. In the interest of obtaining accurate and reliable TDOA estimates, the individual
sensors in each pair must be kept close together. Additionally, as will be shown in the
following chapters, the precision of the location estimate is dependent upon the placement
of the sensors relative to the actual source location. In general, this may necessitate placing
sensors in a wide variety of positions throughout the enclosure. Given only a fixed number
of available sensors and the requirement of spatially local sensor pairs, it is not prudent
and frequently not possible, to evaluate all the TDOA figures relative to a single sensor
location. The sensor-pair geometry advocated in Chapter 2 addresses the problem of source

localization given these autonomous sensor pair-TDOA units.

1.4 Scope of This Work

The topics in this thesis have been grouped into two distinct parts. The first set of chapters
are devoted to presenting the theoretical foundations of a speech source localization system.
These methods take as their input a set of TDOA values and their associated variance
figures as estimated across various combinations of sensor pairs. In Chapter 2 a source-
sensor geometry appropriate for talkers and sensors in the near-field environment is detailed.
Chapter 3 offers and evaluates several error criteria available to the problem. Chapters 4
and 5 provide methods for detecting the presence of a single source and evaluating the error

region associated with a given location estimate, respectively. The second set of chapters
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gives a performance analysis of these techniques in a real environment as well as illuminating
several practical algorithms necessary for a real-time development. Chapter 6 contains some
discussion of the computational aspects of these techniques. A novel closed-form locator
is the subject of Chapter 7, while Chapter 8 contains the derivation and evaluation of a
time-delay estimator intended specifically for the speech source environment. Chapter 9
is the culmination of this thesis, bringing together its individual facets within the context
of several experiments incorporating physical systems. Results are presented to illustrate
the effectiveness of the proposed source localization techniques as well as confirming the
practicality of the theoretical models. Finally, Chapter 10 contains some conclusions and

topics for further study.
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Part 1

Theory
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Chapter 2

Source-Sensor Geometry

Consider the " pair of sensors, m;; and m;y, with spatial coordinates (x,y, z) denoted by
the vectors, m;;, my; € R3, respectively. The unit vector through m;; and m;, is denoted

by @; ! and m; will be used to designate the midpoint of the sensors:

_ m;; — Mo
a = ——Mm
|mi1 - mi2|
m; = m (2.1)

where |-| is the Euclidean distance measure. In general, the pressure waves of a signal source
radiating in this region will require a specific period of time to propagate to each sensor.
Given that the radiator may be modeled as a point source and the medium is uniformly
ideal, these propagation times are directly related to the source’s distance from the specific
sensor. The constant of proportionality being the speed of propagation in the medium, ec.

(In air the speed of sound is ¢ = 342%.) In practice, the absolute propagation times are

'In what follows, the notational convention adopted will be to designate vectors of ordered triplets with
boldface, lowercase characters while the vectors corresponding to directed lines will be denoted by boldface,
lowercase characters with an overline. In each case, the standard vector operations will apply and the
difference in application will be clear from the context.
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Figure 2.1: Locus of potential source locations with a fixed delay & for the i** sensor-TDOA
combination (x; = y({mi1, m;2}, 7 = k)) (a) and those for the cone approximation to y;

(b).
unavailable and only the time difference of arrival (TDOA) relative to the i'" sensor pair
may be measured.

Given a signal source with known spatial location s € R?, the true TDOA relative to the

it" sensor pair will be denoted by T'({m;;, m;,},s), and is calculated from the expression:

|s —mg| — |s — my

T({m;1, mp},s) = (2.2)

c

The estimate of this true TDOA, the result of a time-delay estimation procedure involving
the signals received at sensors m;; and myy, will be given by 7;. In practice, the TDOA
estimate is a corrupted version of the true TDOA and in general, 7; # T'({m;1, m;2}, s).
For the parametric-based localization scheme addressed here, the problem is one of
estimating the source location given only the TDOA estimate information. With a single
sensor-pair, TDOA-estimate combination the locus of potential source locations is defined
to be all spatial locations s for which the equation 7; = T'({m;;, m;3}, s) is satisfied and will
be designated by x({mj;i, m;2}, 7;), or simply abbreviated by x;. The physical constraints

of this problem demand that |c¢ - 7;| < |m;z; — my| and correspondingly the set y; is a
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Figure 2.2: Spherical coordinate system defined relative to the sensor pair m;y, m;s.

continuum. In 3-space a plot of y; generates one-half of a hyperboloid of two sheets.
This hyperboloid is centered about m; and has a; as its axis of symmetry. This situation
is depicted in Figure 2.1a. In general, knowledge of a single sensor-pair, TDOA-estimate
combination does not specify a unique source location, it only restricts the potential location
to a hyperboloid in 3-space.

In an effort to analyze the nature of y; in more detail, spherical coordinate system is
established with origin m; and a; as one axis. See Figure 2.2. As a consequence of the
symmetry in the following analysis, the remaining axes need not be specified, apart from
their orthogonality to @; and each other. With this system, any point p € R> may be
uniquely specified by P(r, 8, ¢), where r is the range of the point (i.e. its distance from the
origin), € is the angle formed by the base vector to the point and the a; axis, and ¢ is the
angle formed by the projection of the base vector into the plane normal to a; relative to one
of the unspecified axes. The formations to be discussed here all possess a symmetry about
the a; axis and will thus be independent of the coordinate ¢.

In terms of this spherical coordinate system, the half-hyperboloid of locus points p =
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P(r,8,¢) € x; must satisfy the relation:

cos? 9 sin? @ 1
= — (2.3)

(c-7)? B |lm; — m|?2 — (c-7)?  4r?

Note that this equation is independent of the sign of ;. It corresponds to a full hyperboloid
of two-sheets. To be thorough, the sign of 7, must be retained to specify the appropriate

half of the hyperboloid.

For large r, the hyperboloid asymptotically converges to the cone expressed by:

cos? 6 sin? @

_ = 2.4
(c-m)?  |my—mpl|?—(c-7)? 0 (2.4)

or equivalently:

§ = cos™! (L) =46 (2.5)

|mi2 - mi1|

With this coordinate system, a cone with its vertex at the origin is expressed by the
simple equation: # = constant. For the case of the i** sensor-pair, TDOA-estimate combi-
nation, this constant is the arccosine of the ratio of the scaled TDOA to the total sensor
separation. It may be desirable to express the locus of possible source locations, y;, in
terms of this single parameter, i.e. approximating the hyperboloid by its corresponding
cone. This situation is illustrated in Figures 2.1a and 2.1b. In making such an approxima-
tion, the actual locus points (those on the hyperboloid) are displaced in position through
the mapping from hyperboloid to cone. Intuitively, these distortions are most extreme for
locus points close to the sensors and decrease dramatically for those locations at a greater
range. To verify this intuition, consider a constant-¢ cross-section of a cone-hyperboloid

pair as depicted in Figure 2.3.
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Cone Approximation

Figure 2.3: Constant-¢ Cross-section of cone-hyperboloid pair showing the angle distortion,
6; — 1, and total distance distortion, D(R, ), associated with approximating a point p € y;
by the the corresponding cone.

Here p € x; has coordinates (r,#) = (R,%) and is a solution of Equation 2.3. The
corresponding cone is given by 8 = 6;. Expressions for the angle distortion, #; — 1, and
the total distance distortion, D(R, 1) = Rsin(6; — 1), are developed by combining Equa-
tions 2.3 and 2.5 to obtain:

cos?tp  sin? _my - 1fn2'1|2
cos? 8, sin%6;, 4R?

which after some work, simplifies to:

sin2(20i) - |myp — 1fn2'1|2

Sin(ei - ¢) = sin(@i n ¢) .16 R2

(2.6)

Equation 2.6 relates the angle distortion to the locus point’s range and angle. An

ks

analysis of this relation, reveals that the angle difference, 8; — ¢, has minima at ¢» =0, 2, 7

Z. The worst case

(the end-fire and broadside conditions) and is maximized for ¢ =~ 0; ~ J
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angle and total distance distortions are then well-approximated by the expressions:

|mi2 - mi1|2

max{f; — ¥} =~ 62 (2.7)
e . 2
max{D(R, )} =~ % (2.8)

The maximum angle distortion varies linearly with the square of the sensor separation to
source range ratio. Hence, given only an anticipated minimum source range, the worst case
errors associated with the cone approximation may be calculated. In practice, these errors
are quite small in comparison to the contributions of noise associated with the other system
parameters. Therefore, a cone approximation to the hyperboloid y; is not unreasonable in
the majority of situations. Each sensor-TDOA combination may be associated with a single
parameter #; as given by Equation 2.5 which specifies the angle of the cone relative to the
sensor pair axis. For a given source and the i'* pair of sensors, the parameter §; will be

referred to as the i’ direction-of-arrival (DOA).
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Chapter 3

Localization Error Criteria

Given a set of N sensor-TDOA combinations and their respective loci of potential source
locations, y;, the problem remains as how to best estimate the true source location, s. Ide-
ally, s will be an element of the intersection of all the potential source loci (s € ﬂf\il Xi)-
(Note that depending on the number sensor pairs and the choice in their placement, this loci
intersection may consist of multiple elements, even under ideal circumstances.) In practice,
however, for more than two pairs of sensors this intersection is, in general, the empty set.
This disparity is due in part to imprecision in the knowledge of system parameters (TDOA
estimate and sensor location measurement errors) and in part to unrealistic modeling as-
sumptions (point source radiator, ideal medium, ideal sensor characteristics, etc.).

With no ideal solution available, we must resort to estimating the source location as the
point in R? which best fits the sensor-TDOA data or more specifically, minimizes an error
criterion that is a function of the given data and a hypothesized source location. Limiting
our scope to the Ly (sum-of-squares) norm, three non-linear least squares (LS) error crite-
ria appear applicable to this situation. The first is motivated from a Maximum-Likelihood

standpoint and the remaining two are heuristically derived from estimate-dependent dis-

19



tance measures. As a preliminary to defining these criteria, the variance associated with a

DOA estimate is explored.

3.1 DOA Variance

The DOA associated with a pair of sensors, m;; and myy, and an estimated TDOA for a
source, 7;, is given by Equation 2.5. 7; is a single realization of a random variable 7; corre-
sponding to the true TDOA, T'({m;;, m;3}, s), corrupted by a random noise process, which
will be assumed to be additive and zero-mean. In the absence of any other information,
the true TDOA is approximated by 7; and the variance of the r.v., var{7;}, assumed to be
available as a byproduct from the delay estimation procedure, is generally a function of the
signal-to-noise ratio at the sensor pair.

An exact formulation of the statistics for 8; requires knowledge of the probability distri-
bution function of 7;. In practice, this is not available. However, if it is assumed that the
pdf of 7; is concentrated near its mean, the moments of §; may be approximated in terms
of the moments of 7; [56]. Specifically,

c? - var{T;}

|myy — 1fn2'1|2 . sin2(0i)

var{f;} ~

(3.1)

The variance of the DOA is therefore dependent upon the estimated DOA with the min-
imum occurring in the broadside source case (¢; = 7) and peaks for the endfire conditions
(; = 0,7). The above approximation is most appropriate for broadside angles and small
TDOA estimation variances. Intuitively, 8; is least sensitive to the precision of the TDOA

estimation procedure for source locations directly in front of the sensor pair.
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3.2 The Jrpos LS Error Criterion

The first LS criterion to be considered is a weighted error based upon difference between

the TDOA estimates and the ideal TDOA associated with the hypothesized source location,

N
Jrpoa(s) = Z €itdoa * [Ti — T({my1, m}, s))° (3.2)

where €;:4,4 is a weighting figure associated with the ith time delay estimate.

Equation 3.2 is motivated from a probabilistic standpoint. If the time-delay estimates
at each sensor pair, 7;, are assumed to be independently corrupted by zero-mean additive
white Gaussian noise with known variance, var{7;}, i.e 7; is a normally distributed random
variable given by:

Ti ~ N(T({milv miQ}v 5)7 var{’ﬁ})

The likelihood function associated with a set of TDOA estimates, 7,72,...,7n, and an

hypothesized source location is given by:

A —(ri = T({mi, mis}, 5))?
P(T1, T2y ..o, TN S) = Z:r[l Wexp( Dvar( T} )

and the corresponding log-likelihood function is:

N C— m;;, mjs},s))?
In(p(71,72,...,7N38)) = — (Zln(\/m)—l_ . T(Q{var{ﬁ} e )

The Maximum Likelihood (ML) location estimate, 8577, is the position which maximizes
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In(p(7y, 72, ..., 7N;8)) or equivalently minimizes:

N (ri = T({mi, mp}, 5))?

; var{7;}

=1

This expression is identical to the Jrpoa(s) LS error criterion in (3.2) with the weighting
figures, €;140q, replaced to the reciprocal of the TDOA estimate variances. For this reason,

the weights are set to

€itdoa = 1/’0(17“{7;} (33)

and therefore, in the case of time-delay estimates corrupted by additive white Gaussian

noise, the minimization of Jrpo4 yields the ML estimate. i.e.

$TpoA = 8p1 = argmin JTpoA(s) (3.4)

3.3 The Jpos LS Error Criterion

The second two LS criteria are based upon minimization of R® distance measures, rather
than the maximization of TDOA-related likelihood function. The first is a weighted error
utilizing the differences between the DOA estimates and the true DOA of an hypothesized
source location, s, relative to each sensor pair. The true DOA is denoted by ©({m;, m;},s)

and the least-squares error criteria is defined to be:

N N
Jpoal(s) = Zeidoa - (d6;)? = Zeidoa [6; — ©({m;;, m;p}, s)]? (3.5)
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Figure 3.1: Illustration of Jpp4 LS Error Criterion for two sensor-pair, TDOA-estimate
combinations.

where €;4,q is a weighting figure associated with the i"® DOA estimate. Figure 3.1 illustrates
the parameters involved in evaluating Jppa for two pairs of sensors. The dashed lines
represent the true DOA’s for a source at location s relative to each sensor pair while the
solid lines show the estimated DOA’s as determined by (2.5). In each case, the solid line
illustrates the intersection of a DOA cone and the plane formed by the hypothesized source
and sensor pair. The differences between the estimated and hypothesized angles are labeled
with d#f.

The weighting coefficients, €4, in (3.5), are selected to be the reciprocal of the respective

DOA estimate variances (3.1) and may be expressed as

|m;o — 1fn2'1|2 . sinz(Hi) B |m;o — 1fn2'1|2 T2

2 - var{T;} 2 var{T}  var Ti}

€idon = L/var{6;} = (3.6)
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The source location estimate found via minimization of the Jpp4 error is given by
Spoa = argmin Jpo(s) (3.7)

Given TDOA estimates corrupted by additive white Gaussian noise, 8po4 does not
possess the Maximum-Likelihood property as does the estimator S7pop 4. However, the Jpoa
error criterion does have several properties that make it preferable in specific situations.
These stem from its use of a distance measure in R> and the emphasis provided via its
weighting coefficients. Specifically, the Jpo4 coefficients given by (3.6) place more value on
the sensor pairs with large sensor separation and/or small TDOA estimates (corresponding
to broadside sources). As (3.1) suggests, these DOA’s are proportionately less susceptible to
noise in the TDOA estimates from which they are derived. Favoring specific DOA’s based
upon sensor placement allows the Jppa error criteria to utilize knowledge of the array
geometry in addition to the delay-estimate information when evaluating the plausibility
of an hypothesized source point. The net effect is to provide the estimator with greater
robustness in unfavorable conditions. As will be shown in the analysis to follow, §poa
possesses a performance advantage in situations where the source is off-angle to the array

and the TDOA estimates are poor.

3.4 The .Jp LS Error Criterion

Finally, we may also consider an error criterion based upon the distance from the hypothe-

sized source to the individual loci of potential source locations:
N
Ip(s) = €a-[D(xi,s)]’ (3.8)
=1
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m;o m;y

Figure 3.2: llustration of Jp LS Error Criterion for two sensor-pair, TDOA-estimate com-
binations.

where D(x;, s) represents the minimum distance from s to the locus x;. In practice, D(x;, s)
will be calculated by the orthogonal distance from s to the appropriate cone approximation
to x;. The Jp LS Error criterion for two sensor-pairs is illustrated in Figure 3.2. Here again,
the solid lines represent the estimated DOA’s as determined from (2.5). The dotted lines
show D(x;,s) and D(y;,s), the orthogonal distances from the hypothesized source location
to the cone approximations of x; and Y;, respectively. Finally, the dashed lines depict the
ranges, I2; and R;, of the hypothesized source to the midpoint of the sensor pairs.

The orthogonal distance, D(x;, s) may be calculated from the existing parameters by:

D(xi,8) = R; -sin(0; — O({m;1, m;2},s)) (3.9)

The weighting coefficients, ¢4, will be calculated using (3.6) in the same fashion as those
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for the Jpoa, and the Jp-based source location estimate is defined to be

Sp = argmin Jp(s) (3.10)

The Jpo 4 and Jp error criteria are similar in that they both evaluate a distance measure
in R3. However, the Jp criterion, by virtue of the R; term in (3.9), has a strong tendency
to bias the Jp-based estimator sp to the benefit of hypothesized source locations with small
ranges. The effect is to dramatically pull the estimate towards the sensor array. The Jpoa
error criteria possesses no such dependency on source range and does not exhibit this trend
in practice.

A practical consideration that must be addressed is the computational procedure re-
quired for the evaluation of these three estimators. Since each of the error criteria that
has been presented is a nonlinear function of s, the solutions of (3.4), (3.7), and (3.10)
require some form of a numerical search (see Chapter 6 for details); search methods have
the potential to be computationally burdensome and problematic due to local minima in

the error space.

3.5 An Analysis of the Least-Squares Error Criteria

The properties of these three error criteria were evaluated through a series of Monte Carlo
simulations. In each case, a ten-element, bi-linear sensor array as depicted in Figure 3.3 was
employed. Sensor spacings were set at 0.5m and the eight pairings of diagonally adjacent
sensors (i.e. sensors 1 and 4, 2 and 3, 3 and 6, 4 and 5, etc.) were selected as the sensor pairs
used for TDOA calculations. This choice of array geometry and sensor pairings is somewhat

arbitrary. The use of a bi-linear array in this case was motivated from its potential use as
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Figure 3.3: lllustration of the experimental set-up used to evaluate the LS location estima-
tors: A 10-sensor planar array with 0.5m spacings and four sources at 90°, 45°, 30°, and
15° with a common range of 4m.

part of a portable teleconferencing unit. The array may be easily deployed at the site and
offers reasonable coverage of a typical conference-room table. In general, the design of
array geometry for the purposes of source localization and/or sound capture is dependent
upon the room environment. The results to be presented here would presumably scale
appropriately for different array dimensions and configurations.

The first simulation compared the three LS error-based location estimators using four
sources with a common range of 4m and varying bearing angles (90°, 45°, 30°, and 15°)
relative to the array center. Figure 3.3 shows this experimental-setup. The true TDOA
values for each sensor pair were calculated and then corrupted by additive white Gaussian
noise of various power levels. For those instances where the corrupted TDOA value exceeded
the maximum time-delay possible for a given sensor pair separation distance (i.e. when
|- 7| > |myz — m;;|), the TDOA value in question was set equal to the maximum possible

TDOA for that sensor pair.
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For each set of corrupted TDOA figures, three location estimates were computed via
minimization of the appropriate error criterion. The estimates in (3.4), (3.7), and (3.10)
were computed via a search method! with the initial guess set equal to the true location.
Clearly this is not a practical algorithm since it requires prior knowledge of the actual
source location, but for the purposes of comparing the statistical properties of these three
estimators it is a computationally reasonable alternative to a more comprehensive search.
100 trials were performed at each of 11 noise levels ranging from a standard deviation the
equivalent of 107™®m to 10™'m when scaled by the propagation speed of sound in air (¢ &
3428). The sample means and standard deviations were calculated from the source location
DOA and range estimates generated by the three error criteria at each noise condition.

For each estimator, at a constant noise level, the location-estimation accuracy was great-
est for the 90° broadside source and progressively declined as the source was moved further
toward the endfire condition. All of the estimators exhibited some degree of bias. This
bias generally grew as the variance of the additive noise was increased and as the source
was moved away from the broadside location. This situation was most extreme for the
Jp-based estimator which displayed significantly greater bias in both range and DOA es-
timation when compared to its Jrpoa and Jpoa-based counterparts. The reason behind
this behavior was alluded to in the previous section and was attributed to the range term
in (3.9).

Given this estimator bias, it is more appropriate to consider the root-mean-square er-
ror (RMSE) of each estimator rather than the estimators’ variance or bias alone. The RMSE
is defined by:

RMSE[#] = \/E[(i — )2

!Chapter 6 addresses a number of issues relating to the specific application of nonlinear optimization
procedures for the evaluation of these location estimates.
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Figure 3.4: Source DOA Estimate RMSE for sources at 90°, 45°, 30°, and 15° relative
to the array and common range of 4m. For each plot the x-axis represents the standard
deviation of the white Gaussian noise added to the true TDOA’s scaled by ¢. and the y-axis

represents the RMSE of the DOA estimate.

where 7 is the estimate of the true value x. In practice, the expectation operator is replaced

by the ensemble average. The RMSE can be shown to be equivalent to:

RMSE[#] = y/bias{2}? + var{2}

and thus the RMSE incorporates the tradeoff between bias and various into a single statistic.

Figure 3.4 displays the RMSE results of these Monte Carlo simulations for the source

DOA estimates produced by each of the three error criteria. The four graphs correspond

to the distinct source locations and in each case the horizontal axis plots the standard
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deviation of the added white Gaussian noise scaled by the propagation speed of sound in
air. For the broadside source at 90° there is very little to distinguish the performance of
these three estimators in the low to moderate noise conditions. However, at the two most
extreme noise levels the Jp-based estimator exhibits a marked increase in RMSE value.
This distinct ’knee’ in the Jp performance line is apparent at all four positions and occurs
at progressively smaller noise levels as the source’s angle of arrival is decreased. In general,
the Jp estimate is by a considerable degree the least robust of the three to the additive noise
and DOA conditions. The Jrpoa and Jpp 4 estimators display a specific trend as well. At
low noise levels, the Jrpo 4-based estimate, which is the ML estimate in this case, possesses
a distinct performance advantage over the Jpp 4 estimate. However, with the higher noise
levels this situation is reversed and the Jpp4 is superior. The performance crossover point
occurs at lower noise levels the more endfire the source is positioned.

The preceeding results presented the RMSE values of the source DOA estimates. A
similar analysis with the range estimates, does not reveal as distinct differences between
the respective estimators. While the Jp estimate possesses an extreme bias towards the
array origin, this is countered by a small range variance. Conversely, the remaining two
maintain little bias, but do have a significantly greater range estimate variance. The net
effect is to produce roughly equivalent range RMSE values for all three estimators.

Based upon these results a second simulation was performed, this time fixing the source
DOA and noise level to 15° and .01m, respectively, and allowing the source range to vary
from 2 to 10m. The DOA estimate RMSE results are displayed in Figure 3.5. At a roughly
constant 2° RMSE, the Jppa-based estimator offers consistently better performance than
its counterparts. The Jrppa-based estimator does slightly worse, particularly at close

range, while the Jp-based estimator quickly climbs to a peak RMSE value of 14° for this
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Figure 3.5: Source DOA Estimate RMSE for sources at 15° relative to the array and ranges
varying from 2 to 10m. Standard deviation of TDOA estimate noise scaled by c is fixed at
.01m for each trial. The x-axis represents the source range and y-axis represents the RMSE
of the DOA estimate.

15° source. The Jp error appears to be quite sensitive to the true source range, the Jrpoa
less so in this respect, and the Jppa error very little at all. The independence of source
DOA estimate precision from the source range is a desirable estimator property, particularly
in applications where only the source’s bearing is of interest (pointing some cameras, for
instance).

To summarize the results of these simulations: For broadside sources and clean TDOA
estimates, the location estimate S7pp4, which is based entirely on a least-squares error
criterion employing the time-delay estimates alone, proved advantageous. However, under
less favorable noise conditions and with sources located off-angle to the sensor array, the
DOA-based location estimator, Spp 4, appears to offer preferable performance. None of the
data available advocated the use of the distance-based estimator, $p, and it will not be

considered further.
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Chapter 4

Detection of Sources

The source-sensor-TDOA model which has been employed for the source localization prob-
lem may also be incorporated with statistical hypothesis-testing procedures to produce
a means for detecting the presence of a signal source. Given TDOA estimates which
are assumed to be samples from mutually uncorrelated, Gaussian random variables, the
TDOA-based LS error criterion, Jrpopa, is shown to be the basis for a probabilistically
optimal detection process. The specifications of the decision rules are dependent upon the
source/non-source model adopted, three of which will be considered here. The first scenario
includes specific models for the TDOA estimates under both the source and non-source
conditions. The resulting detection rule corresponds to a binary hypothesis test. In the sec-
ond scenario, no assumptions are made with regard to the nature of the TDOA estimates
during periods when no signal source is present. Instead of attributing the observations
to a particular hypothesis, the consistency of the source model and the data is evaluated.
For the final scenario, no statistical modeling assumptions are adopted and an empirical

detection test is presented.
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4.1 Source/Non-Source Modeling

The purpose of this chapter is to provide a method of identifying when a signal source is
present in the radiation field of the sensors. When appropriate statistical models are avail-
able, this is accomplished using a source/non-source decision process. In this context the
term “source” will refer to a single, radiating source which has presumably been effectively
located via one of the estimation procedures developed in the preceding chapter. The label
“non-source” will be applied to any location estimate for which the “source” condition is
not satisfied, most notably incorrect location estimates or those estimates produced during
periods of no source activity. The development of a practical source/non-source model re-
quires knowledge of the system application environment and the performance specifications
of the delay estimator responsible for generating the TDOA estimates and variance figures.

With regard to environment, issues that must be addressed are the number of potential
sources and the nature of the background signal during non-source periods. In the simplest
case, the source/non-source model may be be reduced to well-defined single-source and
silence hypotheses. With more complex situations, the non-source condition may include
instances of radically errant location estimates, multiple-simultaneous signal sources, and
silence periods with incomplete or unknown statistics.

The source localization and detection procedures depend principally upon the TDOA
information. In many instances, the time-varying nature of the source necessitates the use of
a delay estimator responsive to short-term signal characteristics. For a delay estimate to be
accurate and meaningful, the analysis window associated with a single delay estimate must
be small enough to assure that the signal is statistically stationary throughout the analysis
time interval. The appropriate time-interval limit is dependent upon the nature of the signal

source. In the case of speech, this time frame is on the order of 20ms to 30ms. An additional
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factor is that frames of speech will be interspersed with periods of silence. Ideally, the delay
estimator will be capable of producing independent estimates on a frame-by-frame basis.
For those frames containing speech, the TDOA value is a reflection of the source DOA and
the variance is a function of the signal content and the SNR conditions. During periods of
silence, the TDOA statistics are not clearly defined. Presumably, in the absence of a source,
the background noise at the sensors is uncorrelated and the resulting TDOA estimates will
possess a zero mean. If the estimate variance is calculated on a short-term basis as well, the
variance figure reported with the TDOA estimate will correspond to the silence condition.
However, if the variance value is evaluated over several analysis frames, some of which may
include periods of source activity, the variance term is not appropriate for modeling the
silence regions.

Two source/non-source models will be addressed here. The first assumes that a very
simple scenario is appropriate for the application. Only one signal source is operating at
a time and the delay estimator is capable of reporting accurate variance figures during
both source and non-source periods. This model, referred to as the “binary source/silence
model”, is investigated in scenario #1. The second model is more general, assuming that
TDOA statistics are valid only during “source” periods. The “non-source” condition is left
unspecified. The subject of scenario #2, this situation is termed the “source-only model”.
Scenario #3 involves an alternative, non-statistical approach. In the absence of any clear
statistical models, the physical clustering of the estimated DOA bearings relative to the

estimated source is adopted as a detection measure.
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4.2 Scenario # 1: Binary Source/Silence Model

4.2.1 Binary Hypothesis Testing

For a set of observational data and a number of probabilistic models which may have
produced the data, statistical hypothesis testing provides a systematic means for identifying
the appropriate model and quantifying the confidence of this choice [57]. In the event that

only two specific, statistically well-defined hypotheses are considered:

(Hp) “non-source”

(Hy) “source”

the hypothesis selection may be accomplished using a binary hypothesis test. In the absence
of any prior detection probabilities or costs associated with misclassified decisions, the
decision rule will be derived from the Neyman-Pearson criterion. The objective behind
this approach is to select an appropriate false-alarm probability (Pg) and then determine
a decision strategy that obtains this value while simultaneously maximizing the probability
of detection (Pp). In this context, Pp associated with a decision rule is defined as the
probability that the source is identified as present when it is not (H;p selected when Hy
is true), and Pp is the corresponding probability that the source is identified as present
when it is (H; selected when Hj is true). A decision rule which satisfies these restrictions is
referred to as the “most powerful test” of the hypothesis Hy with respect to the alternative
Hy. Let po(y) and p1(y) be the joint probability density functions for an observation set y
under hypotheses Hy and Hjy, respectively. The likelihood-ratio, A(y), appropriate for this

binary decision is defined by:
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A theorem attributed to Neyman and Pearson [58] shows that the most powerful test with

the false-alarm constraint (Pp = «) is found from the likelihood-ratio test:

Aly) > A accept Hy

Aly) < A accept  Hy

where Pr(A(y) > A | Hy) :/ Py(A)dA =
A

Py(A) is the probability density function of the random variable A(y) under hypothesis Hy.

The maximum probability of detection obtained by this optimal test is:
Pp = Pr(A(y) > A | 1) :/ PL(A)dA
A

where P;(A) is the probability density function of A(y) under Hj.

The above test is frequently expressed in terms of a monotonic function G = G(A) of
the likelihood ratio. Assuming, without loss of generality, this function to be increasing,
the likelihood test is rewritten as:

G(A) > Gy accept Hy

if
G(A) < Gy accept  Hy

where  Pr(G(A) > Go | Ho) = / Po(G)dG = a

Go
and the corresponding Pp is found from:

Pp = Pr(G(A) > Go | Hy) = /GOO PG
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Here Fy(G) and P;(G) are the pdf’s of G(A) under each of the respective hypotheses.

4.2.2 Binary Source Detection Test

The source/silence model assumes that for the set of N sensor-pairs, the TDOA estimates
(11,72, ...,7n) and their associated variances (var{Ti},var{Tz},...,var{Ty}) are avail-
able, and that the source location estimate, §, has been evaluated. With regard to the
earlier discussion, the TDOA estimates are further assumed to be observations from inde-

pendent, Gaussian processes with the hypothesis-dependent parameters:

(Hp): “silence” T; ~ N(0,var{T;})

(Hy): “source” T; ~N(T({mj1, m;2},8), var{7T;})

In each case the reported variance figure is assumed to be consistent with either the “source

or “silence” conditions. The hypotheses are distinguished only by their differing mean

values.

The likelihood-ratio for these binary hypotheses is given by:

N .
1 —(ri=T({m;1,m3},8))?
P71, T2y, TN) 2131 \/2mvar{T;}y P ( 2vari7} )
A(T1, 72, ..., TN) = = ~
polmr 72,1 7) Y
Ly Vamvar(rg P\ Zoar(T)

N Ti— m;i,m;s },8))>
o (gt

N 2
1;[ exp (21}(17“%%})

Defining the function G(A) = —21In(A), the expression is reduced to the sufficient statistic:

N N 2
Z { il 22} )) Z P

G117, T var{T;} - var{7;}

=1
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N
72

= Jrpoa(d) =3 Wim (4.1)

=1

and the optimal likelihood test becomes:

G(m,72,...,7n) < Gy accept Hj

G(ti,72,...,78) > Go accept Hy

Go
where  Pr(G(A) < Go | Ho) = /_ Po(G)dG = a (4.2)

Note that the inequalities have been reversed as a result using a monotonically decreasing
transformation function G'(A). The probability of detection given the false-alarm constraint
is:

Go

Pp = Pr(G(A) < Gy | Hy) = / P(G)dG (4.3)

— 00

In order to determine the test threshold, Gy, and the resulting detection probability,

the pdf of the test statistic G(71, 72, ..., 7n) must be obtained. Simplifying (4.1) yields:

N . a2 9 . R
G(Th T2y v vy TN) = Z T({m217 mz2}7 S) UGT{Q;}T({mﬂv m22}7 S)

=1

The statistic is a linear combination of Gaussian variables and therefore a Gaussian variable

itself under each of the hypotheses. Specifically,

+m 52
(HO) “silence” G ~ N(i\f: T({mﬂ? mi2}7 é)z 4§: T({milv mi?}v é)z )
P var{7;} o var{T;}
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. , T({mi;, mp},8)?% L T({miy, myy}, 8)2
(Hy): “source GNN(—; var (7] ,4; var (7] ) (4.4)

—m 82

Evaluating (4.2) and (4.3) requires the calculation of the area under a Gaussian probability
density function. While no closed-form solution to this problem exists, values of the cu-
mulative unit normal distribution function are available via numerical integration methods.

This function is defined by:

2= [ e )a
z) = — exp | — | dx
27 J—co P 2
and ®(z) may be interpreted as the probability that a unit-mean, unit variance Gaussian
variable is less than z. In terms of this notation, solving (4.2) for the detection threshold

yields:

Go
Py = / I X e

= @ (o7 () + V) (4.5)

Figure 4.1 illustrates the relationship between the G statistic’s probability distributions

under each of the hypotheses and the calculation of the detection and false-alarm probabili-
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Po(G)

+m G

~<— Accept Hq I Accept Hp ————— =

Figure 4.1: Binary Hypothesis Test: The probability distribution functions for the statistic
G under each hypothesis are illustrated. The detection (Pp) and false-alarm (Pr) proba-
bilities are indicated by the shaded regions under each curve and to the left of the decision

threshold (Go).

ties. Pp and Pp areindicated by the area under the curves of Py (G) and Fy(G), respectively,
for values of G less than the decision threshold Gg. Note that both probabilities exhibit
monotonic growth(decay) as G is increased (decreased).

The false-alarm and detection probabilities are functions of the mean (m) and variance
(s%) of the statistic ¢ as defined in (4.4). These figures are directly related to the source
location estimate and the TDOA variances. As (4.5) indicates, for a fixed false-alarm rate,
the probability of detection improves as m increases. In general, this implies that a signal
source at a location possessing small TDOA values with respect to the sensor pairs is more
difficult to distinguish from silence than the same source found at a location with larger

TDOA values. For a linear array, this means that end-fire sources have more favorable
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Figure 4.2: Binary Hypothesis Test: Plots of Probability of Detection versus Probability of
False-Alarm for two sets of TDOA estimate variances. The four source locations are each
at a range of 10m from the 10-element bilinear array with bearing angles varying from 90°

(broadside) to 75°.

detection statistics than broadside ones.

To exhibit this phenomena, the ten-element bi-linear depicted in Figure 3.3 and used
for the experiments in Section 3.5 was reemployed for simulations involving four different
source locations. The sources were placed at a range of 10m relative to the midpoint of
the array and at the same height as the array mid-line. The location bearing angles were
begun at broadside (90°) and varied in 5° decrements. Sensor-pair selection was done the
same as Section 3.5. Figure 4.2 plots the receiver operating characteristic (ROC), Pp versus

Pr, for each location and two sets of TDOA estimate variance levels. The source at 90°
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Figure 4.3: Binary Hypothesis Test: Plots of Probability of Detection versus standard
deviation of TDOA estimates scaled by ¢ (in meters) for three false-alarm probabilities:
Pr=.001, .01, and .1. The four source locations are each at a range of 10m from the
10-element bilinear array with varying angles.

presents the worst-case location at this range. In this situation there is a relatively low
detection probability associated with each Pr value at these variance levels. As the source
is moved from broadside, the Pp values quickly grow until the ROC curve is nearly pinned
at Pp ~ 1.0 for the 75° location. Note that the source range (10m) and TDOA estimate
variances are quite large in comparison to those used in Section 3.5. These conditions were
selected in an effort to highlight the location dependence inherent in this binary hypothesis
test. With more moderate variance levels and a smaller range, the ROC curves would
all appear nearly flat at Pp ~ 1.0 (including the worst-case broadside source) and thus

unenlightening.
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The properties of this binary hypothesis test were further analyzed through a second
set of simulations. This time the probability of detection for the four source locations was
evaluated as a function of the TDOA estimate variance while the false-alarm rate was held
constant. Figure 4.3 displays the plots of Pp versus the TDOA variance for Pp values
of .001, .01, and .1. Each of these curves is flat at Pp =~ 1.0 for small TDOA variances
and possesses a distinct knee as the variance is increased. The robustness of the test
improves as the source is moved from broadside, but even with the worst-case source at this
relatively large range, the detector performance does not degrade until the TDOA variance
has increased to over 10~2m.

Given a situation in which the source/silence model assumed for this scenario is appro-
priate, the binary hypothesis test presented provides an effective means for assessing the
validity of a source location estimate. Further, the significance of this detection decision
may be evaluated from the sensor geometry and the location estimate information. For

most practical applications, this confidence level is quite high.

4.3 Scenario # 2: Source-Only Model

4.3.1 Model Consistency Testing

In the previous scenario, the “silence” hypothesis modeled the non-source frames as periods
of no source activity with known statistics. As discussed earlier, the delay estimate variance
figures may not be valid for the silence frames and the binary hypothesis test presented there
would be non-applicable. Furthermore, with many situations, the source-silence dichotomy
is inappropriate. An uncorrelated, zero-mean background noise may not be the only al-

ternative to a single source. Consider the case of several simultaneous sources. A delay
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estimator which does not distinguish this situation will tend to produce a single TDOA
estimate that is a weighted mixture of the individual delay figures. The TDOA estimates
in this case would not correspond to either of the hypotheses of the previous scenario’.
For these reasons, it is desirable to have a hypothesis test which attempts to validate the
consistency of the “source” hypothesis given the TDOA information without pronouncing
a more favorable description. This is the goal of model consistency testing.

Given a set of observational data, y, and a statistical model believed to be responsible

for generating this data, two hypotheses are defined:

(Hp) “observations are not consistent with model”

(Hy) “observations are consistent with model”

With hypotheses specified in this manner, identifying the “most powerful test” of Hy
with respect to Hg is not possible. In the absence of any knowledge of the alternative
hypotheses, the approach taken is to select the smallest acceptance region satisfying a fixed
probability of detection constraint, Pp = . The acceptance region represents the set of
observations y that is maximally consistent with the Hy hypothesis subject to the Pp =
restriction while attempting to minimize the false-alarm probability associated with the
unknown alternatives. Denoting the acceptance region by Ri, the decision rule may be

expressed as:

vy € Ry accept Hy

y €Rq accept Hy

'The localization of multiple-sources will be addressed in Chapter 9 in the context of competing speech
sources.
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where Ry is found from the solution of the constrained minimization problem:

min dy subject to Pr(y e Ry | Hy) = / p(y)dy =3 (4.6)
721 Rl 721

4.3.2 Source Consistency Test

The “source-only model” may be expressed as:

(Hp): “source not valid” 7; o0 N(T({m;1, ms}, 8), var{T;})

(Hy): “source valid” Ti ~ N(T({m;1, mys}, 8), var{T;})

In the event of a single source, with estimated location 8, the TDOA estimates are again
assumed to be observations from uncorrelated, Gaussian random variables with known mean
and variance. However, no assumptions are made concerning the nature of the alternative
hypothesis.

Instead of investigating the observation space consisting of the TDOA estimates them-
selves, it is advantageous to consider the one-dimensional statistic F' = F(m, 72,...,7n)
based upon the Jrpo4 error criterion:

o (i — T({miy, mio}, 8))?

F(Tl,rg,...,TN):Z oar (T = Jrpoa(8)

=1

Under the Hy hypothesis, I is a random variable possessing a chi-squared distribution with
N-degrees of freedom (F ~ x3%;). Since the chi-squared pdf is unimodal, the acceptance
region R will be the closed interval [a,b] and the constrained minimization problem may

be solved analytically. Applying Lagrange multipliers to (4.6) indicates that the probability
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density function values associated with the optimal acceptance region must satisfy [59]:

where pﬁv(x) is the pdf associated with the x% distribution given by:

1
(N=2)/2 _—x/2
") = SaEr N ) ‘

Finding the acceptance region endpoints then requires searching Pyz, for equal values and

expanding/contracting the endpoints until the required probability, Pp = § is contained

within the interval. Defining the cumulative N-degree of freedom chi-square distribution

function as:

the final decision rule may be written as:

F<a oo F>b “source not valid”

a< F<b “source valid”

with @ and b calculated from:

P2 (@) = pX?v(b) such that VU(b;N)-V(a;N)=pj

(4.7)

With no alternative hypotheses assumptions, an analysis of the test’s operating char-

acteristics is less straightforward than in the previous scenario. To illustrate some of the

consistency test properties, four potential signal situations were created and simulated using

the 10-element bilinear array with its eight sensor-pairs. Case A corresponds to the “source
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200 200
150 1 150
L
©
2100 — 100
8
& .. - e e
50 1 50E~~5‘4"¢ 4.. ..' .:. \ .o.u.a
ne-'*‘.’:f B ﬁ
e e e s oy ﬁg"ﬂ*: G 53’%‘ “3»*‘%‘* M
¥ Al LY YN TRy X L SR -,
il ok Pt e DI J Ay 0
0 500 1000
Case C: Valid Source Frames = 0% Case D: Valid Source Frames = 0%
200 ‘ 200 ™
150 — 150}, -
" . R
Q© oL i
B 1001, wr.” 100 125
& )
(,) .oo
50 50}~
0 0
0 500 1000 0 500 1000
trial # trial #

Figure 4.4: Hypothesis consistency test for four signal situations with a source estimated to
be broadside to the 10-element bilinear array and at a range of 10m. Each plot presents the
statistic F' for a 1000 trials under each signal condition. The acceptance region [1.2,15.7]
(shown as a horizontal region in each plot) was calculated from (4.7) with a detection
constraint of 5 = .95. “Valid Source Frames” refers to the percentage of trials falling
into the acceptance region. The signal situations represent: (Case A) single active source,
(Case B) two active sources, (Case C) no source and correct variance figures, and (Case D)
no source and underestimated variance figures.

valid” hypothesis, while Cases B-D represent various signal circumstances inconsistent with
the valid source model. For each case, the estimated signal location, §, was assumed to be
broadside to the sensor array at a range of 10m. This is identical to the 90° source in the

scenario #1 simulations. The signal situations are described below:

Case A: Valid source. True TDOA values are corrupted by samples of uncorrelated
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Gaussian noise with a known standard deviation .01m.

Case B: Two simultaneous active sources. The sources are assumed to be symmetri-
cally situated 2.8m about the the broadside location such that the corresponding
TDOA estimates reflect equally the contributions of each true TDOA set and the
source location is estimated to be 8. TDOA values are corrupted by samples of
uncorrelated Gaussian noise with a known standard deviation .01m. This is an
instance of multiple sources producing TDOA estimates that are not representa-
tive of a single source location. The non-valid location estimate found through
minimization of the error criteria is a reflection of the true source locations, in

this case, their midpoint.

Case C: No source present and correct TDOA variance figures. TDOA values are
set to zero and uncorrelated Gaussian noise with a known standard deviation
.0lm is then added. This corresponds to the “source absent” hypothesis in the

binary hypothesis test of scenario #1.

Case D: No source present and underestimated TDOA variance figures. TDOA val-
ues are again set to zero and uncorrelated Gaussian noise with a standard devi-
ation .02m is then added. However, the reported TDOA variance is .01m. This
corresponds to the case of a delay estimator that does not accurately model the
variance term during silence intervals and for which the binary hypothesis test

is inappropriate.

Note that for each of the above situations, the reported variance figures and the source
location estimate are identical. Under the “source valid” hypothesis, the statistic I would

be distributed as F ~ x2% in each case and therefore the acceptance regions will be identical.
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Selecting a detection probability constraint of g = .95, the acceptance interval calculated
from (4.7) is found to be [a, b] = [1.2, 15.7].

The simulations consisted of 1000 trials with each signal situation. The results are shown
in Figure 4.4. In each of these graphs, the statistic F' value for a given trial is denoted by a
dot at the appropriate height. The boundaries of the acceptance region are represented by
the two horizontal lines in the lower portion of each plot. The percentage figures listed in
the figure titles refer to the fraction of trials falling within the acceptance region. For the
Case A simulation, the valid source frame value of 95% is consistent with the Pp constraint
of B = .95. Cases B-D demonstrate the ability of the consistency test to reject non-valid
source scenarios. For the two source situation presented the false-alarm rate is less than
1% and with the silence conditions, the distinction between models is large enough that
no misclassifications are made. The results of Case C may be compared to those of the
binary hypothesis test of scenario #1. Referring back to the 90° source in Figure 4.3, the
graph indicates that with these conditions (Pp = .95 and TDOA noise = 1072m) the false-
alarm rate associated with the binary decision rule is negligible (Pr < .001). While the
consistency test presented here is generally more conservative due to its lack of alternate
hypothesis assumptions, the results of the Case C simulation certainly agree with those
predicted for the binary decision test. In this instance, little in the way of performance has
been sacrificed by substituting the more general consistency test for the binary hypothesis

test.

4.4 Scenario # 3: No Statistical Model

In scenario #1, simple statistical models were assumed to be available for both the source

and non-source conditions. Scenario #2 involves the limitation of this knowledge to the
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characterization of the TDOA estimates only during valid source periods. In this final
scenario, no clear statistical models are assumed to be applicable to either the source or
non-source hypotheses. The resulting detection rule is based entirely upon empirical crite-
ria rather than a probabilistic derivation, and as such, a performance analysis is difficult
to quantify independent of the particular application. This empirical test is appropriate
for those cases in which the “source-only model” is unrealistic. These situations include
instances in which the TDOA estimates are found to deviate significantly from a Gaussian
distribution or their reported variance figures are inaccurate on an absolute scale?.

Given a source location estimate, §, the empirical detection measure, F, is defined as
the average of the absolute value of the differences between the estimated DOA, 6;, and the

true DOA associated with the location s relative to each sensor pair, i.e.

1 & .
E= ﬁ;wi—@({mﬂ,mﬂ},sﬂ (4.8)

The physical significance of this detection measure is illustrated in Figure 4.5 for the case
of 3 sensor pairs. In the interest of clarity, the DOA cones are shown as bearing lines which
represent the intersection the respective cone with the plane formed by the estimated source
location and the appropriate sensor-pair axis. The solid lines indicate estimated bearing
lines for each sensor pair while the dashed lines denote the DOA bearings for the location
estimate. The expression in (4.8) is a reflection of the degree that the estimated bearings

are clustered about §. A tight clustering produces a small value for F and is indicative of

2Tt is important to distinguish the absolute and relative precision of the variance figures associated with
the TDOA estimates. A misrepresentation of these values on an absolute scale prevents the use of the
statistical models incorporated into the hypothesis-testing procedures of scenarios #1 and #2, but may not
be detrimental to the location estimation itself. The LS-error criteria presented are dependent upon the
ratio of these variance values relative to one another. An error in the scale of these terms will not effect the
minimization process. In practice, knowledge of the relative TDOA variance may be simpler to obtain than
an estimation of the absolute variance figures.
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Figure 4.5: Empirical Detection Test: Illustration of the physical significance associated
with the detection measure F for the case of 3 sensor pairs.

a valid source location estimate. Excessive values are typical for an inaccurate estimate or
a situation where a single source is not present. In practice, a detection threshold of 1° to
2° provides an effective means of identifying valid source locations.

A detection statistic which incorporates average bearing angle deviation is preferable to
tests based upon TDOA disparity or overall distance. With regard to physical significance,
a bearing angle measure is advantageous to a TDOA approach. Because of the nonlinear
mapping from spatial bearings to TDOA values, displacements stated in terms of time-delay
figures will have varying physical interpretations depending upon source bearing. A mean
distance measure is unfavorable due to its bias towards locations close to the sensors. This
was the shortcoming of the Jp error criterion presented in the previous chapter. Remote

sources, in general, possess a greater total distance from the DOA cones thereby making
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it difficult to devise a detection threshold that is independent of source range. The use of
a detection measure based upon direction of arrival alone avoids both these difficulties. It
is invariant to both source bearing and range as well as possessing a physical significance

suitable for a source/non-source selection.

4.5 Discussion

Three distinct source detection tests have been detailed in this chapter. Their use is depen-
dent upon the environmental and system constraints imposed by the practical application.
The first, the binary source detection test, was designed with a very specific circumstance
in mind, namely those instances where the “source/silence model” is valid. When this is
the case, the test is statistically optimal. The second, the source consistency test, was
derived assuming a general source/non-source model. It is applicable to a wider range
of situations, but may not represent the most powerful test available when specific sta-
tistical models are known. The empirical detection test presents the extreme end of the
utilization-performance spectrum. While being universally applicable, it does not offer any
guarantee of optimality or performance predictability. In general, the selection of a par-
ticular detection test is a function of the information available. When specific knowledge
of the source/non-source statistics is known, it may be possible to generate a test which
fully exploits this understanding, as was done in scenario #1. For those cases where the
hypotheses are inadequately defined or unspecified altogether, the general detection test of

scenario #2 and the empirical test of scenario #3 are appropriate.
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Chapter 5

Estimation of Localization Error

Region

Given the location estimate of a source, an assessment of the spatial region of uncertainty
related to the estimate is essential before the information can be judiciously employed in a
practical application. The geometric framework developed here lends itself to a straightfor-

ward analysis of the spatial covariance associated with the location estimators.

5.1 Displacement Geometry

Let s be the 3-dimensional location estimate of a source with true location t. For a pair
of sensors, m;; and m;y, with midpoint m; and unit axis a; as shown in Figure 5.1, R; is
defined as the distance from t to m; and ¥; = O({m;;, m;3},t) as the angle between the
directed line segment t — m; and the sensor pair axis a;. The values ]%Z and éZ are defined

similarly for the location estimate §. The 3-dimensional Cartesian displacement vector from
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Figure 5.1: The relationship between the true source location t and an estimate of the
location § relative to the it sensor pair.

t to s is denoted by:

As = As,

In what follows, it is assumed that the true source location is known and the goal is to
develop a statistical analysis of the precision associated with the source estimate s.

g, is related to the positional vectors via the dot product:

Ricost; = (t+As—m;) -a
= (t—-m;) &+ As-a;

= R;costp; + As -a@; (5.1)

Following [43], R; is approximated by its first-order Taylor series expansion about the
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true source location:

~ t— s
RizRiﬁ—( Rfm ) - As (5.2)

This linearization of the source range value requires the assumption that source location
estimate be sufficiently close to the true location such that the error induced in this ap-
proximation is negligible in comparison to localization errors associated with the TDOA

estimate errors. As will be shown, this assumption is quite reasonable in practice.

Substituting (5.2) into (5.1) yields:

Ricoséi—l— (t _Rmz) .Ascoséi = R;cosy; + As - &

or equivalently:

cosf; — cos; = l— —(t— mi)%] - As (5.3)

By making the assumption that C(;;;/’i R~ %ﬁ" and applying (2.5) to the cosine terms on the

7

2

left side of the equation, arriving at:

(#) [T ({my1, mi2}, 8) — T({my1, mpz}, t)]
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And finally:

c

[T({m;1, m;3},8) — T({m;, mp}, t)] = (M) [E - mi)%] As

= hl. As (5.4)

where h! is the (1 x 3) vector relating the difference in TDOA for the i** sensor pair to the

estimate displacement vector.
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It will be useful to express (5.4) for the N sensor pairs via matrix notation. The (N x 1)
vector of TDOA differences is denoted by A7y and the (N X 3) matrix composed of the

hZ»T vectors will be given by H | i.e.

[T({myy, my2},8) — T({myy, mys}, t)] hi
[T'({m21, ma2}, 8) — T'({mg1, maa}, t)] h?
ATy = H =
| [ (myimya) . 8) - T(mygmya) . 6] L

The estimate displacement is then related to the N delay-estimate, sensor-pair combinations
by

A1y = HAs (5.5)

5.2 Source Estimate Based Upon Jrpos

The case where the position estimate in question was derived from minimization of Jrpoa
LS error criterion and correspondingly § = S7po4 as given by (3.4) is now examined.

The LS error (3.2) may be rewritten as:

2
Jrpoa(s) = itdoa * {Ti — T({m;1, m;s}, S)}

itdoa * {Ti — T({m;;,mp},t) +

N
>
N
;e
T({ma, miz},t) - T({mi1, mip),s)|

(5.6)

Defining W4, as the (N x N) diagonal matrix of weighting coefficients €;14,, given by
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(3.3) and AT, to be the (IV x 1) vector of differences between the estimated TDOA and

true TDOA,
m — T ({myy, myy}, t) €1tdoa
Ty — T'({myy, myy}, t) €2tdoa
ATTL‘ = Wtdoa =
™~ — T({mn, mpy2},t) €Ntdoa

Equation (5.6) is rewritten as:
JTDOA(S) = (ATTL‘ - ATst)TWtdoa(ATTt - ATst)
The LS criterion is assumed to be minimized when s = §, which gives:

Jrpoa(8) = min Jrpoa(s) = (ATr — A7) Wigoa (AT — ATy)

= (ATTL‘ - HAStdoa)TWtdoa(ATTt - HAStdoa) (57)

The right side of this equation is identical in form to the weighted linear least squares

error and can be shown [60] to be minimized when:
AStdoa = (HTWtdoaH)_lHTWtdoaATTt (58)

Therefore, minimization of Jrpoa4 would result in a Asyy,, as given above. Equation
(5.8) relates the displacement vector associated with a location estimate § to the TDOA
estimates that would produce this particular estimate via minimization of the nonlinear LS

error criterion Jrpoa4.
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The covariance of Asyy,, is given by:
COU{AStdoa} =F {(Astdoa - E(Astdoa))(Astdoa - E(Astdoa))T}

The delay estimates have been assumed to be corrupted by a zero-mean, uncorrelated noise

source and therefore F(A7,;) = 0. Substituting this and (5.8) into the above yields:

cov{Asyjos} = E{AstdoaAstdoaT}
T
= ("W igoo ) T H W00 E(AT AT )W, H (HT W00, H) )

= (H'Wi0o H) " HTW 1, E(AT AT D)W i THHTW 1, H)

The term F (ATTtATﬂLT) is equivalent to cov{Art,;} which is an (N x N) diagonal
matrix with entries var{r;}. Similarly, the weighting coefficients that comprise the diagonal
elements of W 4,, were selected to be (1/var{r;}), and thus, E(ATTtATﬂLT)WtdoaT =In.

The expression therefore simplifies to:

cov{Asigont = (HI'Wi0o H)"HHTW 13, H) (HTW 1, H) 7!

= (H Wy, H)™ (5.9)

Equation (5.9) predicts the covariance of the §7po4 estimate given knowledge of the

source and sensor locations as well the TDOA estimate variances.

5.3 Source Estimate Based Upon Jpoa

A similar procedure may be followed for analyzing the precision of the location estimate

§poa, found via minimization of the Jpp 4 LS error criterion.
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The LS error-criteria (3.5) is expressed as

N 2
Jpoa(s) = Eéidoa : [92' — O({m;, m;y}, S)}

N
= > €idoa - {92' — i + ¢ — O({m;1, m;2}, S)r
=1

= (Abfy — A0y) W, (A — Aby,)

where W, is the diagonal matrix of weighting coefficients €;40, defined by (3.6), Afy, is
the vector of differences between the estimated and true DOA’s, and A#f is the vector of

DOA differences between the hypothesized source location s and the true location t,

€1doa
€2doa
VVdoa —
€Ndoa
0 — O({miy, mye},s) — oy
) — 1o O({mgy, my},s) — ¥
Ae@t = Aest =
On — YN O({mp1, mya},s) — YN

Returning now to (5.3) and applying the trigonometric identity:

; AW i— 0
cos #; — cosp; = 2sin (¢;_ )sm (¢ 5 )
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which for small angle differences (éZ /2 1);) is well approximated by:
cosf; — cos W A —(0} — 1p;) sin 1,

or

b — i —(cos B; — cos ;)
! v sin ;

Substitution of (5.3) into this expression yields:

. -1 a; coS ;

8;

The vector of estimate and true DOA differences, Az, may then be written as

Al = GASgoq where G =

Following an argument similar to that used for the derivation of the expressions in (5.8)

and (5.9), the displacement vector associated with §pp4 is calculated from

Asgon = (GTW,4,,G) ' GTW 4, Aby, (5.10)

and the corresponding displacement covariance is found to be

cov{Asy,,} = (GTWdoaG)_l (5.11)
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A comparison of (5.9) and (5.11) and their constituent matrices reveals that HT W 4,, H =
GTW,,,G and therefore the covariance predictors are equivalent. While the estimates
Stpoa and Sppa are clearly not identical, the approximations made in deriving these
closed-form estimate error expressions yield indistinguishable results. In situations where
the aforementioned approximations are less appropriate (severe noise conditions, extreme
source location bearings, etc.) the $rpoa and §poa estimators do vary considerably in
performance, as was demonstrated in the simulation results of the preceding section. Under
these conditions the estimate covariance expressions will be less applicable in predicting the
actual estimator error. However, as will be shown, the estimate error expressions, (5.9) and
(5.11), are accurate predictors of the estimators’ true performance given reasonable source

position and signal quality scenarios.

5.4 Analysis of Estimate Error Predictors

To evaluate the accuracy of (5.9) and (5.11) as predictors of the estimators’ true covariance,
two sets of simulations were conducted with the varying parameter being the positioning of

the sensor pairs.

Evaluation #1

In this first experiment, the ten-element, bi-linear sensor array shown in Figure 3.3
was reemployed. The array was situated at the center of one wall in a 6m X 6m x 4m
rectangular room as depicted in Figure 5.2. Once again, the eight pairings of diagonally
adjacent sensors were selected as the sensor pairs. Monte Carlo simulations consisting of

100 trials each were conducted across a grid of 36 source locations within the room. Source
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{ 6m

Figure 5.2: Location Error Evaluation #1: The ten-element bilinear sensor array with 0.5m
spacings is centered along one wall of a 6m X 6m x 4m rectangular room.

locations were spaced a meter apart along two distinct horizontal planes. For each source
location the true TDOA values for each sensor pair were calculated and then corrupted
by uncorrelated additive white Gaussian noise. The corrupting noise level at each sensor
pair was fixed at a moderate level, a standard deviation of 10~2m when scaled by c¢. The
LS-based estimates §7poa and §poa were then calculated for each trial via a quasi-Newton
algorithm constrained to search within the physical dimensions of the room.

Figure 5.3 displays the results of these simulations. Each of the plots in this figure
is from the perspective of a viewer directly above the room and looking downward. The
sensor array is represented by the five circles on the left vertical axis. In the top graph,
the 3600 (36 locations, 100 estimates per location) $7po4 estimates have been plotted with
dots. While a dot’s position as projected onto the floor is clear from the figure, the height
is ambiguous. Because of the symmetry involved in the setup of this array within the room

environment, the choice of source locations at each height was limited to the half-plane
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Figure 5.3: Location Error Evaluation #1: (top graph) A top-down view of the §7poa
source estimates for the 100 trial simulations at 36 source locations. (bottom graph) Prin-
cipal component axes of the predicted estimate error covariance for each source location.
Alphabetic labels refer to those source locations for which numerical data is presented in
Table 5.1.
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delineated by the line normal to the center of the array. Source locations on the remaining
half-plane would presumably display the same properties. In each of these plots, the lower
horizontal half-plane contains source locations at a height of 2m, level with the mid-line of
the sensor array. The upper half-plane is at a height of 3m, a meter vertically above the
array.

The bottom graph in Figure 5.3 shows the principal component vectors of the predicted
covariance matrix scaled to 2.5 standard deviations. For each source location, the predicted
error covariance matrix was calculated via (5.9), or equivalently by (5.11). An eigenvector-
eigenvalue decomposition of the (3 x 3) matrix yields its principal components vectors [61].
Geometrically, if cov{Asg,,} is positive definite with eigenvalue-eigenvector pairs (A;, e;)

for i = 1,2, 3, all the (3 x 1) vectors x which satisfy:

(x — %) (cov{Asgoa}) " Hx — %) = h?

define a hyperellipsoid centered about X with axes +hv/A;e;. The eigenvalues correspond
to the variance of the data set projected onto the corresponding eigenvector or principal
component. Setting h = 2.51in the above expression will therefore generate an hyperellipsoid
with axes extending 2.5 standard deviations in either direction from the center of the conic
along each of the principal component vectors. If the distribution of source estimates
possesses a trivariate normal density, a given estimate would have a 0.9 probability of falling
on or within such a hyperellipsoid [61]. In each case, the estimator has been assumed to be
zero-biased and thus the center of the hyperellipsoid is the given source location. The lines
in the bottom graph display the scaled principal component vectors which correspond to

the axes of the hyperellipsoid associated with the predicted error covariance of each source
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Standard Deviations of Standard Deviations of
Point || Principal Components (cm) Point || Principal Components (cm)
Label pred. S8rpoa Spoa Label pred. S8rpoa Spoa
1% 22.7 | 21.0 | 21.7 1%¢ 35.4 | 33.0 | 33.0
A 274 1 9.0 | 149 | 9.1 D 27d | 3.7 3.2 3.2
3rd | 1.8 1.8 1.8 3rd | 3.0 2.8 2.8
total | 24.6 | 25.8 | 23.6 total | 35.7 | 33.3 | 33.3
1% 10.6 10.5 | 10.5 1% 33.6 | 34.1 | 34.0
B 27d |19 | 1.9 | 1.9 . o7d | 37 | 38 | 38
34 | 1.5 1.3 | 1.3 34 | 35 | 36 | 3.6
total | 10.9 10.8 | 10.7 total | 33.9 | 34.5 | 344
1% 10.7 | 10.7 | 10.7 1% 39.9 | 35.6 | 35.3
c 27d | 2.9 2.2 | 2.2 . 27d |40 | 42 | 4.2
3rd | 2.0 L9 | 1.9 34 | 39 | 38 | 3.8
total | 11.1 11.1 | 11.1 total | 40.2 | 36.0 | 35.7

Table 5.1: Location Error Evaluation #1: The principal component standard deviations
for the predicted error covariance and the sample covariances derived from the §7po4 and
Spo4 estimates. Point labels refer to source locations in Figure 5.3.

location shown in the top graph.

Table 5.1 presents detailed numerical data for selected source locations in Figure 5.3.
In each case, the principal component standard deviations are listed for the predicted error
covariance as well as the sample covariances associated with the sets of s7po4 and §poa
estimates. A fourth row gives the total standard deviation. This value is calculated as the
square root of the component variance summation and is equivalent to the square root of
the trace of the particular covariance matrix.

Several observations are apparent from Figure 5.3 and Table 5.1. The predicted error
covariance closely models, to within a few centimeters, the true performance of both the
Stpoa and Sppa estimators. As the figure suggests and the table quantifies, disparities
between the predicted and observed are most extreme in those cases involving relatively
large error variances, where the linearity assumptions used in the derivation of the error
covariance predictor are less valid. For instance, consider the source point labeled ‘D’,

located at (3.5m,0.5m) and at a height of 2m. The total observed standard deviation is
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33.3cm for each estimator while the predicted total is 35.7cm. The 2.4cm difference is
largely accounted for by the first principle component. At the other extreme is the point
‘B” at (1.5m,1.5m) and height 2m. The disparity between predicted and observed total
standard deviation is only .lcm. For sources positioned near the boundary of the room,
this disparity between observation and prediction may be due, in part, to artificially low
observed covariance values brought about by the search constraint placed on the LS-error
criteria minimizer. Those source locations that are estimated to be outside of the physical
room are placed at the room boundary and the spread of source estimates is subsequently
skewed. This effect is apparent in the statistics for point ‘F’ where there is a visible cluster of
estimate points at the wall of the room and the observed first principal component standard
deviations are sizably less than the predicted value.

As expected, the source estimation procedure is most accurate for broadside sources
close to the sensor array. Estimate precision is extremely sensitive to bearing for sources
near end-fire conditions and the quality of the range estimates degrades rapidly as the true
source range increases. These observations are consistent with results reported for standard
linear arrays, as in [38]. For a fixed (x,y) position relative to the floor, the variation in
height of the half-planes had little effect on the estimators’ precision. An exception to this
rule being the source location labeled ‘A’ at location (0.5m,5.5m) and height 3m and its
symmetric counterpart at (0.5m,0.5m) and height 2m. While the former is farther from
the sensors than the latter, it possesses a milder bearing condition relative to the array. As
the figure illustrates, this small improvement in bearing angle has a dramatic effect on the
error spread of the source’s location estimates in comparison to its counterpart’s. Finally,
with regard to the LS-error criteria, the results of this set of simulations are consistent with

those of the previous section. For broadside sources with a large DOA angle, the §7pp 4 and
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S§po4 estimators perform comparably. With source locations close to the end-fire condition,

the §pp4 estimate obtains a slight performance advantage at this noise level.

Evaluation #2

In previous set of simulations, those source locations that were estimated with the
highest degree of precision possessed two key features: they were broadside (or nearly
broadside) to the sensor array and they were not particularly distant from the sensors. Short
of placing physical obstacles at those positions deemed undesirable, the span of potential
source locations within a room cannot be dictated. However, there may be a great deal of
liberty granted in the placement of the sensors. The results of the Evaluation #1 motivated
the choice of the array configuration illustrated by Figure 5.4 in which a 0.5m x 0.5m
square array has been centered along each wall of the 6m x 6m x 4m rectangular room.
This sensor arrangement provides for an improved coverage of the room environment. The
vast majority of potential source locations are at a broadside angle to and in the proximity
of at least one sensor pair. The diagonal combinations within each sub-array were selected
as the sensor pairs, yielding the same number of TDOA estimates (eight) and the same
sensor spacings (.5v/2m) as used in the previous experiment. Monte Carlo simulations were
conducted in an identical manner to those of Evaluation #1. However, now that the array
configuration possesses the added plane of symmetry relative to the rectangular room, the
grid of source locations was selected from four parallel quarter-planes at heights ranging
from the midpoint of the room, 2m, to a half-meter short of the ceiling, 3.5m.

The results of this experiment are presented in Figure 5.5 and Table 5.2. Once again,
expressions (5.9) and (5.11) accurately predict the results of the Monte Carlo simulations.

Discrepancies between observed and predicted values continue to be greatest in the large

67



Sensor Arrays

v Am
\1 '
o .o
|
e I ¢
L. ! 1
¢ } ¢
/L ,,,,,,,,,,,,,,,,,,,,,,,,,,,,, €1
, e
7 5m
/ Y oL
/ h-5m
d 6m
’
’
’
’
7
’

{ 6m

Figure 5.4: Location Error Evaluation #2: Four sets of 0.5m X 0.5m square sensor arrays
are positioned at the center of each wall in 6m x 6m x 4m rectangular room.

variance cases. The Srpo4 and Spoa estimators perform comparably under these cir-
cumstances as well with the §pp4 estimate being mildly preferable for the extreme source
location conditions. Source height has little effect on the overall estimation precision, ex-
cept under those circumstances where altering source height significantly alters a source’s
bearing angle relative to a sensor pair. In short, the trends from Evaluation # 1 remain
apparent with this alternative sensor arrangement. However, the overall source localization
error has been reduced significantly as a result of the more judicious placement of sensors.
For nearly all 36 source locations, the total error standard deviation has declined markedly
and the error hyperellipsoids are considerably less eccentric than those generated via the

bilinear array of the previous experiment.
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Figure 5.5: Location Error Evaluation # 2: (top graph) A top-down view of the §7poa
source estimates for the 100 trial simulations at 36 source locations. (bottom graph) Prin-
cipal component axes of the predicted estimate error covariance for each source location.
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Standard Deviations of Standard Deviations of
Point || Principal Components (cm) Point || Principal Components (cm)
Label pred. S8rpoa Spoa Label pred. S8rpoa Spoa
1%¢ 14.7 | 13.5 | 13.3 1%¢ 4.5 4.9 4.7
A 274 | 54 | 4.9 | 4.9 D 274 1 2.0 2.0 | 2.1
3rd 2.8 2.8 2.8 3rd 1.2 1.2 1.2
total | 15.9 14.6 | 14.4 total | 5.0 5.4 5.3
1% 6.6 5.1 5.0 15 4.1 4.2 4.2
B 27d |29 | 29 | 29 . 2nd |35 | 3.8 | 3.8
3rd 1.9 2.0 2.0 3rd 2.3 2.3 2.2
total | 6.6 6.2 6.1 total | 5.8 6.1 6.0
1% 3.2 3.8 3.8 1% 4.5 4.7 4.6
c 2rd | 3.1 3.3 | 3.2 . 27d | 2.0 1.8 | 1.8
3rd 2.9 2.7 2.7 3rd 1.2 1.5 1.4

total | 5.3 5.7 5.7 total | 5.0 5.2 5.1

Table 5.2: Location Error Evaluation #2: The principal component standard deviations
for the predicted error covariance and the sample covariances derived from the §7po4 and
Spo4 estimates. Point labels refer to source locations in Figure 5.5.

5.5 Discussion

As Evaluation #2 illustrates, the placement of sensors within a room can dramatically
impact the quality of the source location estimates. Sensor positioning is usually subject
to a number of restrictions. These may be due to the physical or aesthetic constraints of
the environment. They may also be due in large part to the requirements of the time-delay
estimation procedure. It has been assumed throughout this discussion that the source local-
ization process is independent of the TDOA estimation, requiring that only the parameters
of sensor pair locations, TDOA estimates, and the estimate variances be passed from the
latter to the former. However, the precision of time-delay estimators is highly dependent
upon the coherence or similarity of the signals received at the two sensors. It is therefore
essential to the quality of the TDOA estimates that the separation of the individual sensors
within each sensor pair be small enough to prevent significant disparities in the received

signal quality or content across the sensor pair. This qualification makes certain placement
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scenarios, that are seemingly advantageous from a purely localization standpoint, ineffec-
tive due to the detrimental effects on the quality of the time-delay estimates. The increased
TDOA variances essentially overwhelm the advantages of a broadened baseline. In practice,
the selection of sensor separation distances requires a knowledge of the environmentally-
dependent performance characteristics associated with the time-delay estimation procedure
employed. The simulations presented here have used a sensor separation distance of .5v/2m
along with a TDOA noise standard deviation of .01m. This has proven to be a realistic and
appropriate combination of these parameters for this room setting.

The considerations expounded upon in the preceding paragraph apply only to the sepa-
ration of individual sensors within a sensor pair, not to the overall placement of the sensor
pairs themselves. The choice of sensor pair numbers and positions ultimately depends upon
minimizing some form of a precision-based cost function that is constrained by the require-
ments of the physical environment and the intra-pair separation distances. The details and
method of minimizing such a cost function will vary dramatically from one application to
another. Some work in this area related specifically to speech source acquisition has been
reported in [5, 1, 62, 63]. In many scenarios, prior information concerning the potential
locations of signal sources or a set of spatial regions from which it is desirable to obtain
‘good’ location estimates may be specified and the complexity of the cost function will be
greatly reduced. Regardless of the specifics, at the core of this procedure there must be a
means of evaluating estimation accuracy given source and sensors locations. It is here that
the expressions for predicting error covariance find application.

Another application of the error covariance predictors is as the basis of a scheme for
distinguishing sources in a multi-source tracking system. Consider a situation where a

number of source location estimates {sy,ss,...,sy} have been evaluated over a period of
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time. It is desired to know whether or not these estimates are associated with a single, non-
moving source or several such sources. A null hypothesis testing approach may be adopted
to determine if the observed location estimates are consistent with a single source hypothesis
[57]. Let s be the sample mean of the estimate points and the assumed true location of
the hypothesized single source. Using (5.9) or (5.11), the predicted error covariance for
the location § is evaluated and denoted the matrix by C. The hypothesized error region is
assumed to be normally distributed and accordingly, if the single source model were valid,
the location estimate samples would be derived from a p-dimensional normal distribution
with mean § and covariance C. The scalar statistic
N
S=3 (si-85"C7'(s; - 5)

=1

would possess a chi-squared distribution with p(/N — 1)-degrees of freedom (S ~ XZ(N—I))‘
Letting Pr be the desired false-alarm probability, the acceptance region that is maximally
consistent with the hypothesized model while satisfying the false-alarm criterion is given by

the interval:

a<S<bh such that px2(
P

@=pe
b
and /a P2 (z)dz =1 - Pp

p(N-1)

. o1 . . . . 2 . .
where pX?a(N—l) (x) is the probability density function associated with the Xp(N=1) distribu-
tion. If .S is not in this interval, the single source model is rejected in favor of a multiple-

source or moving-source scenario.

72



Part 11

Practice
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Chapter 6

Practical and Computational

Considerations

This chapter is intended to illustrate some of the practical issues involved in calculating the
location estimates detailed in Chapter 3. These estimation procedures involve nonlinear
error-criterion, Jrpo 4 or Jpo 4, the minimization of which cannot, in general, be performed
analytically. Nonlinear function optimization typically entails some form of iterative search
in the function parameter space. While this process may be facilitated through an efficient
selection of candidate points, these techniques are computationally burdensome and subject
to a host of practical considerations. In general, there is a fundamental trade-off between
algorithm efficiency and robustness. The most efficient means are sensitive to discontinuities
in the objective function as well as to the choice of the initial search point. When applied
to an overly-complicated function, such methods will frequently obtain local minima or
pursue an undesirable tangent. Meanwhile, more robust approaches involving a number
of starting points or grid searches, will tend to produce more reliable results under these

circumstances but at the cost of time and resources. The choice of an optimization method
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Figure 6.1: Illustration of the Error Criterion Associated with a Steered-Beamformer-Based
Locator: A 3-dimensional mesh plot (left) and a contour image (right) of the beamformer
output power generated by a set of candidate source locations. The source locations repre-

sent a horizontal rectangular grid at a height of 2m inside the enclosure with 10cm spacings
between test points.

ideally depends upon the nature of the function to be minimized and necessitates an element
of ‘conventional wisdom’ on the part of the user.

As will be shown in this chapter, the Jrpo4 and Jpo4 error criteria exhibit the con-
tinuity and unimodal properties appropriate for efficient optimization. This situation is
contrasted by the objective function associated with the ‘focalization’ procedure alluded to
in Chapter 1. This presentation is then followed by a comparison of several appropriate

nonlinear optimization routines applied specifically to this localization problem.

6.1 Characterization of Error Criterion

Figure 6.1 illustrates the nature of the localization criterion associated with the steered-
beamformer-based genre of locators discussed in Chapter 1. The displayed plot was pro-
duced using the ten-element bilinear array and 6m x 6m x 4m enclosure of Figure 5.2 and an
ideal source located 20° off broadside at a range of 4.25m and height of 2m (identical to the

height of the array midline). For this example, the sensor recordings were generated from
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a high-quality speech segment by artificially applying delays appropriate for a point source
at the designated location. No additional modeling was performed. The resulting set of
sensor signals corresponds to a highly ideal situation, flawlessly delayed versions of identical,
noiseless source signals as well as complete knowledge of the signal spectral content.

Following [21], the ML source location estimate is found by focusing the array at a num-
ber of specific locations and searching for the point that maximizes the beamformer output
power. In this instance, a single 512-point window of a 20kHz discrete signal containing the
vowel portion of the word ‘They’” was used. Figure 6.1 displays the output power in dB for
a horizontal rectangular grid of test points separated by 10cm intervals. The level of the
analysis plane was 2 m, the same height as the actual source location. The left-hand plot
shows a 3-dimensional mesh of the power figures plotted as a function of location within
the search plane. The bilinear array sensor positions, denoted by ‘o’, have been included
to establish room orientation. Their vertical placement is arbitrary on this scale. The
right-hand plot illustrates this same data via a contour image.

In Chapter 1, the steered-beamformer-based class of locators was dismissed as the basis
for a practical speech localization system. These plots highlight some of the undesirable
features associated with the genre’s error criterion, making the locators computationally
infeasible. As is apparent from the figure, the error function contains several local maxima
and does not possess a strong peak at the true source location, even under these ideal cir-
cumstances. Reliable estimation of the global maximum in this situation would necessitate
the use of a sophisticated and laborious search procedure, typically demanding an order of
magnitude more function evaluations than would be required by more efficient optimization
procedures. Several of these more practical iterative optimization methods will be suc-

cessfully employed with TDOA-based locators in the following section but are ineffective
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for this application. Furthermore, the work involved in computing the beamformer output
power for a single candidate location is substantially greater than that for the Jrpoa or
Jpo4 error criteria. The increase in workload depends on the quantity and arrangement of
the sensors. For this simulation, each calculation of the steered-beamformer error criterion
represents a factor of 10 to 20 more operations than a single evaluation of the TDOA-based
criterial.

Figures 6.2 and 6.3 illustrate the results of a similar analysis conducted with the LS
error criteria, Jrpoa and Jpopa, respectively. This second set of simulations involved
the same source location and set of candidate test points as the steered-beamformer error
criterion situation. Using the ten-element bilinear array, the sensor pairs were selected as
the eight doublets of diagonally adjacent sensors. In each case, the true TDOA values for
the prescribed source location were calculated relative to the individual sensor pairs and
then corrupted by additive Gaussian noise. Three TDOA noise conditions were evaluated;
these represented standard deviations of .001m, .01m, and .1m (when scaled by the speed
of sound in air). These two localization methods require finding the global minimum of
their respective error criteria. To aid in their visualization and comparison to the earlier
simulation, the plots in Figures 6.2 and 6.3 display the reciprocal of the Jrpoa and Jpoa
functions (in dB) and thus the location estimate would now correspond to the coordinates
producing the global maximum.

The multimodal nature of the steered-beamformer error criterion with its numerous
peaks and valleys is starkly contrasted by the set of functions plotted in Figures 6.2 and 6.3.

The practical utility of these two TDOA-based error criteria is clearly demonstrated by

!Granted, the TDOA-based schemes require TDOA estimation prior to the localization stage. However,
the individual TDOA’s need only be evaluated once per frame and, given the independence of the sensor-
pairs, this pre-processing may be easily parallelized.
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Figure 6.2: Illustration of the reciprocal Jrppa Error Function Space: Evaluation of the
error criterion over a horizontal, 10cm interval grid of candidate source points at a height
of 2m. Each row of plots represents a different TDOA precision condition.
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Figure 6.3: Illustration of the reciprocal Jppa Error Function Space: Evaluation of the
error criterion over a horizontal, 10cm interval grid of candidate source points at a height
of 2m. Each row of plots represents a different TDOA precision condition.
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this second second simulations. For each combination of error criterion and TDOA noise
condition, the resulting function is smoothly varying with a single peak; ideally suited for
optimization by computationally efficient means. The dynamic range of the functions as well
as the resolution of the maximum point depends greatly upon the precision of the TDOA
estimates incorporated. With the .001m TDOA noise cases, a very distinct peak is evident
at the actual source location. As the noise levels are increased the acme is progressively
less distinguished from the alternative locations. For this source location there is very
little variation between the two LS criteria themselves over the range of noise conditions.
This observation is consistent with the results of the experiments in Section 3.5 where the
Jrpoa- and Jpp 4-based locators were found to exhibit nearly identical performance with

near-broadside sources.

6.2 Comparison of Nonlinear Optimization Routines

Several Monte Carlo simulations were performed to evaluate the relative effectiveness of four
representative nonlinear optimization routines. Each of these methods involves a sequential
search starting from a single initial guess location and may be classified as belonging at
the computationally efficient end of the efficiency vs. robustness spectrum. In the interest
of standardization, the simulations were conducted using generic applications of routines

included in the widely-available MATLAB software package?. The routines are:

Quasi-Newton: The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [64, 65, 66,
67], a gradient-descent approach using a mixed quadratic and cubic line search. MAT-

LAB function: fminu.

2MATLAB is a trademark of the Math Works, Inc. of Natick, MA. The basic software, as well as the

Optimization Toolbox employed here, are furnished under licensing agreement.
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Simplex Method: The Nelder and Mead Downhill Simplex algorithm [68], a slower, but
more robust geometrical approach not requiring derivative estimates. MATLAB func-

tion: fmins.

SQP: Sequential Quadratic Programming (SQP) [69], an adaptation of linear programming

techniques to the constrained nonlinear problem. MATLAB function: constr

NLLS: The Levenberg-Marquardt Algorithm [70] adapted from the nonlinear least-square

(NLLS) modeling problem. MATLAB function: leastsq

An excellent summary of the each of these methods as well as a discussion of their relative
merits and applicability is available in [71] while [72] presents their MATLAB implementa-
tion details. For the simulations that follow, the worst-case estimate precision was fixed at
Imm. The remaining search parameters were set to the default values.

The parameters for these simulations were again modeled after those of Evaluation #1
in Sectionb.4. The ten-element bilinear array depicted in Figure 5.2 was employed with
the sensor pairs selected as the eight doublets of diagonally adjacent sensors. 100 source
locations were randomly selected within the 6m x 6m X 4m rectangular enclosure, and the
true TDOA values were calculated and then corrupted by additive Gaussian noise with a
standard deviation of .01m. Location estimation was performed with the 100 individual
TDOA sets using each combination of the error criterion and optimization routine. The
entire process was performed twice, first using the center of the room as the initial guess
location (full search) and then employing an initial search guess that was a random pertur-
bation of the actual location (abbreviated search). The full search reflects the case when no
prior knowledge of the source location is available. The abbreviated search is motivated by a

scenario in which an approximate location has been provided, either via previous estimates
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Jrpos-Based Locator w/ Full Search

Quasi-Newton

Simplex Method SQP NLLS
min median max | min median max | min median max | min median max
Error (cm)|| 1.0 124 239.8) 1.0 16.5 540.2| 1.0 124 101.8] 1.0 123 129.1
Iterations || 31 60 332 | 180 253 423 | 41 63 170 | 23 41 91
FLOPS |[|2e4+04 3e+04 2e405(8e404 1e4+05 2e+05|3e+04 4e404 1e+05

le+04 2e+04 5e+04

Jrpos-Based Locator w/ Abbreviated Search
Quasi-Newton Simplex Method SQP NLLS
min median max | min median max | min median max | min median max
Error (cm)|| 1.0 123 129.1) 1.0 123 129.1| 1.0 123 80.3| 1.0 123 129.0
Iterations || 31 37 56 71 116 186 | 38 53 7 22 29 51
FLOPS |[[2e4+04 2e+04 3e404(3e4+04 5e+04 8e+04|2e+04 3e+04 5e+04

le+04 2e+04 3e+04

Jpos-Based Locator w/ Full Search

Quasi-Newton

2e+04 be+04 Te+04

Simplex Method SQP NLLS
min median max | min median max | min median max | min median max
Error (cm)|| 0.7 12,5 692.8| 0.7 19.1 10164.7| 0.7 125 113.9| 0.7 13.7 226.2
Iterations || 30 46 96 164 251 779 25 59 84 28 47 95
FLOPS ||2e+04 3e404 6e404|1e+05 2e4+05 be405

2e+04 3e404 7e+404

Jpos-Based Locator w/ Abbreviated Search

Quasi-Newton

Simplex Method SQP NLLS
min median max | min median max | min median max | min median max
Error (cm)|| 0.7 12.0 130.4| 0.8 124 130.4| 0.7 122 80.3| 0.7 12.1 1304
Iterations || 17 36 80 53 111 240 | 23 40 78 23 35 83
FLOPS ||le4+04 2e+04 be404(3e4+04 7e+04 1e+05|2e+04 3e404 6e+04|2e+04 3e+04 6e404

Table 6.1: Comparison of Nonlinear Optimization Routines: Minimum, median, and maxi-
mum values out of the 100 trials for the four optimization routines (Quasi-Newton, Simplex
Method, SQP, and NLLS) reported for three categories: error (the Euclidean distance be-
tween the estimated and actual locations), the number of algorithm iterations, and the
total number of floating point operations (FLOPS) utilized as given by the MATLAB flops
function. The top two charts represent the results obtained for the Jrpo 4-based estimator
while the bottom two give those of the Jppa-based estimator. Correspondingly, the top

table in each pair lists the full-search condition; the lower tables display the results of the
abbreviated search.

or through a preliminary closed-form estimation procedure (see Chapter 7). In the case of

an abbreviated search, the initial search location was computed by adding .25m standard
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deviation Gaussian noise to each of the 3 dimensional values of the true location. Table 6.1
presents the collective results of these simulations. For each of the four optimization routines
(Quasi-Newton, Simplex Method, SQP, and NLLS) the minimum, median, and maximum
values out of the 100 trials are reported for three categories: error (the Euclidean distance
between the estimated and actual locations), the number of algorithm iterations, and the
total number of floating point operations (FLOPS) utilized as given by the MATLAB flops
function. The top two charts represent the results obtained for the Jrpo 4-based estimator
while the bottom two give those of the Jppa-based estimator. Correspondingly, the top
table in each pair lists the full-search condition; the lower tables display the results of the
abbreviated search.

First, with regard to estimate error relative to the LS error criterion employed, these
results are consistent with the the simulations of Section 3.5. The Jrpoa and Jpo4 cri-
teria yield comparable estimator performance at this moderate noise condition. With the
exception of the NLLS routine, the Jpp 4 searches exhibit a tendency to converge to their
final estimate in fewer iterations. However, this does not result in reduced computational
load on the part of these methods. Each evaluation of the Jppa criterion requires the
calculation of direction-of-arrival data in addition to a weighted sum. The result is more
operations per iteration in comparison to the Jrpop 4 measure, offsetting the gains of fewer
algorithm steps. Consequently, the FLOPS figures associated with the Jpo4 are generally
higher than those given for their Jrpoa-based counterparts.

Several observations may be made regarding the performance of the individual optimiza-
tion routines. First, the Simplex Method is clearly the least desirable, possessing by far the
worst precision, most iterations, highest FLOPS counts, and surprisingly, the least robust-

ness of the four routines tested. The distinctions between the remaining three algorithms
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are less apparent. The Quasi-Newton, SQP, and NNLS methods offer nearly equivalent
error results under the respective testing conditions. The SQP method does present some
evidence of increased robustness, consistently obtaining the least maximum error scores. In
terms of iterations and FLOPS values, there is a distinct trend which is dependent upon the
LS error criterion employed. For the Jrpopa-based estimates, the NLLS technique achieves
the highest computational efficiency. With the Jpp4-based locators, the Quasi-Newton
technique has a small computing advantage. Not surprisingly, each of these four optimiza-
tion methods benefited significantly from the inclusion of a prescient initial search location.
The results of the abbreviated searches exhibit dramatically improved figures for each of the
performance statistics evaluated relative to their full-search equivalents. The reduction in
iteration and total operation counts are to expected because of the reduced search distance;
the improvements in the error figures are indicative of the overall robustness of the meth-
ods to the nature of the objective function utilized and their dependence upon initial guess
selection. With the general search, the Quasi-Newton and Simplex Methods exhibit the
highest tendency to obtain local minima or pursue an incorrect tangent. Correspondingly,
they appear to benefit the most from an informed initial guess.

These simulations were intended to illustrate the applicability of a class of optimiza-
tion techniques to this problem. As for the selection of a single routine, none of these
approaches appears to offer a distinct advantage under all the testing conditions. Clearly,
in terms of performance criteria alone, there is no reason to utilize the Simplex Method.
If the selection process is guided strictly by computational efficiency, either the Levenberg-
Marquardt (NLLS) or the Quasi-Newton BFGS algorithms may be preferable. The Sequen-
tial Quadratic Programming (SQP) approach offers a modicum of added robustness without

a sizable increase in computational demands, and for these reasons, was the optimization
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function used in the experiments performed for this work. Additional considerations may
be relevant to a specific application. For instance, the size of the software encoding or the
ease of translating an algorithm to a specific real-time hardware platform, may be cause to

favor one optimization routine over another of comparable performance.

6.3 Discussion

In the first section of this chapter, the general nature of the steered-beamformer objective
function and TDOA-based localization criteria, Jrpo4 and Jpp 4, were characterized. The
latter were found to be amenable to minimization by efficient nonlinear iterative optimiza-
tion procedures. The second section evaluated several such algorithms, demonstrating their
overall effectiveness as a means for obtaining reliable and accurate TDOA-based location
estimates as well as comparing their respective performance attributes. Each of the routines
evaluated was a ‘canned’ package and entailed no specific tailoring for this task. In an effort
to further aid search robustness and efficiency, it may be possible to incorporate specific
knowledge of an error criterion’s nature into the optimization process. However, given the
success and practicality of these existing methods, no attempts along those lines have been

made to date.
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Chapter 7

A Closed-Form Source Localization

Algorithm

Each of the LS criterion-based estimators detailed in Chapter 3 involves the minimization
of an error measure that is a nonlinear function of the potential source location. As a result,
these estimators require a numerical search of a potential location space (a subset of R?).
While the utility of these objective spaces for minimization by efficient search algorithms
that rapidly converge to the desired location estimate has been demonstrated, there may
be applications where a full-search is not feasible due to limited computational resources.
This is particularly true for real-time situations requiring a high update rate and/or many
sensors. These circumstances necessitate the development of closed-form location estimators
that, while providing sub-optimal localization data, are computationally inexpensive. For
those circumstances where the optimal estimate is required the closed-form solution may be
used as an intermediate solution, providing the initial starting point for a less burdensome,
partial search.

A closed-form solution to the source localization problem, termed the linear intersection
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(LI) method, is presented in this chapter. The algorithm is derived in the context of the
sensor-pair geometry developed in this work and shown to provide results on par with the
search-based estimators as well as performance superior to that of a quality, previously-

reported algorithm.

7.1 Closed-Form Location Estimation

In Section 3.2, it was shown that for the case of time-delay estimates corrupted by additive
white GGaussian noise, the Jrpoa-based estimator, 87po 4, produced the Maximum Likeli-
hood location estimate. Under certain conditions, the Jpp 4-based estimate, §7po4, was
found to yield performance results superior to those of its TDOA-based counterpart. Each
of these estimates is found via minimization of the sum-squared error of the differences
between the observed TDOA or DOA and those of the hypothesized source, s. Because
these error criteria are non-linear functions of s, neither estimate possesses a closed-form
solution. For the location estimator presented here and the many others found in the
literature the requirement of a closed-form solution necessitates the development of alter-
native error criteria. These alternative error criteria take several forms and vary in the
degree to which they approximate the LS error criteria and perform in comparison to the
search-based estimators. A discussion of several of these closed-form estimators as well as a
relative performance evaluation is presented in [41]. Smith and Abel found their proposed
estimation procedure, an approach which linearizes the TDOA differences and obtains an
estimate through a linear least-squares matrix solution, to exhibit an RMS error superior
to that of the estimators presented in [46] and [39]. Their estimation procedure is termed
the spherical interpolation (SI) method and will be employed in Section 7.3 as a benchmark

for evaluating the proposed closed-form algorithm.
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Existing closed-form solutions to this type of localization problem have been developed
with different situations in mind. Radar, sonar, and global positioning are the most common
examples. These applications differ from the speech source localization problem addressed
here in several respects. Primarily, the TDOA estimates for these other scenarios are
evaluated relative to an absolute time-scale or a single reference sensor. The sensor-pair
geometry detailed in this work requires only that TDOA estimates be found between isolated
doublets of sensors. This generalization has been imposed out of necessity. Given a general
placement of sensors within an environment and realistic speech sources possessing non-
ideal radiation patterns, there is no assurance that the received signal coherence across
the span of the sensors will be appropriate to allow precise TDOA estimation relative to
a single reference sensor. In Section 5.5, it was argued that such conditions restrict the
intra-pair separation distance in practice. The closed-form location estimator presented in
the following section is derived specifically from the context of the sensor-pair geometry and

is designed to closely approximate the ML estimator.

7.2 The Linear Intersection Algorithm

As presented in Chapter 2, given a specific sensor pair {m;;, m;3} and their associated
TDOA estimate, 7;, the locus of potential source locations in 3-space forms one-half of a
hyperboloid of two sheets. This hyperboloid is centered about the midpoint of m;; and
m;y and has the directed line segment m;;m;; as its axis of symmetry. For sources with
a large source-range to sensor-separation ratio, the hyperboloid may be well-approximated
by the cone with vertex at the sensors’ midpoint, having m;;m;; as a symmetry axis, and

a constant direction angle relative to this axis. The direction angle, 8;, for a sensor-pair,
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N

bearing line

I
j

Figure 7.1: Quadruple sensor arrangement and local Cartesian coordinate system

TDOA-estimate combination is given by:

0; = cos™! (L) (7.1)

|mi1 - mi2|

Now consider two pairs of sensors {m;1, m;o} and {mjs, mj4}, where j is used to index
the sets of sensor quadruples, along with their associated TDOA estimates, 7;12 and 7j34,

respectively. The sensors’ placement positions are constrained to lie on the midpoints of a

rectangle and as a result m;;m;; and mj;3m;; are orthogonal and mutually bisecting. A

local Cartesian coordinate system is established with unit vectors defined as X; = %,
J J
Yy, = |HT;3_H:1144|, and z; = X; X y; with the origin at the common midpoint of the two pairs,
J

denoted by m;. This geometry is depicted in Figure 7.1. The first sensor-pair TDOA-
estimate approximately determines a cone with constant direction angle, o, relative to the
X; axis, as given by (7.1). The second specifies a cone with constant direction angle, j3;,

relative to the ¥; axis. Each has a vertex at the local origin. If the potential source location
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is restricted to the positive-z half-space, the locus of potential source points common to
these two cones is the bearing line, I';, in 3-space. The remaining direction angle, v;, may

be calculated from the identity

2 2 2 _
cos” aj + cos” 3; 4 cos”y; =1

with 0 <7, < 7 and the line may be expressed in terms of the local coordinate system by

the parametric equation

z; oS o
U, = =7y | =rd;
j Y; i | cosp; J&j
Z; oS 7Y;

where r; is the range of a point on the line from the local origin at m; and a’; is the vector
of direction cosines. The line I'; may then be expressed in terms of the global Cartesian

coordinate system via the appropriate translation and rotation. Namely,

l; =r;R;a’; + m;

where R; is the 3 X 3 rotation matrix from the 7t local coordinate system to the global

coordinate system. Alternatively, if a; represents the rotated direction cosine vector then

1]‘ =r;a; +m;y
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Given M sets of sensor quadruples and their corresponding bearing lines

l; =r;a; + m; forj=1,...,.M

the problem of estimating a specific source location remains. The approach taken here will
be to calculate a number of potential source locations from the points of closest intersection
for all pairs of bearing lines and use a weighted average of these locations to generate a final
source-location estimate. Figure 7.2 illustrates the process used to determine the points of

closest intersection. Specifically, given two bearing lines

1]‘ = rja; + my

I, = ria;+ my (7.2)

the shortest distance between the lines is measured along a line parallel to their common

normal and is given by [73]:

[(a; X ag) - (m; — my)|
la; X ag|

d]‘k =

Accordingly, the point on 1; with closest intersection to l; (denoted by t;;) and the point
on I with closest intersection to 1; (denoted by ty;) may be found by first solving for the
local ranges, r; and rg, and substituting these values into (7.2). The local ranges are found

via solution of the overconstrained matrix equation:
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Figure 7.2: Illustration of the process used to calculate the points of closest intersection,
t;r and ty;, for a pair of bearing lines, 1; and 1, in 3-space.

Each of the potential source locations is weighted based upon its probability conditioned
on the observed set of 2M sensor-pair, TDOA-estimate combinations. The TDOA estimates
are assumed to be normal distributions with mean given by the estimate itself. The weight

associated with the potential source location, t;, is calculated from:

M

ij = HP(T({mllvml?}vtjk)lel%Ulle)
=1

'P(T({ml?n ml4}7 t]k)7 T34, 01234) (73)

where P(z,m,c?) is the value of a Gaussian probability distribution function with mean m
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and variance o? evaluated at z, i.e.

1 —(z — m)?
P %) =
($, m,o ) o7 exp( 202 )

The final location estimate, which will be referred as the linear intersection estimate (Srr),

is then calculated as the weighted average of the potential source locations:

M M
2 2 Wikt

s
Il

—

e
Il

Evaluated in this manner, $7,; represents the expected value of a partially known random
variable. The points of closest intersection, t;;, are assumed to be points of high probability
clustered about the peak of a symmetrical probability distribution. In this sense, the LI
algorithm attempts to model the ML estimate which searches for the maximum in the joint
probability distribution of the TDOA estimate set.

Figure 7.3 depicts the LI localization method for the sensor arrangement shown in
Figure 5.4 of Section 5.4. Note that each of the four quadruple units satisfies the LI
sensor positional constraint when sensor-pairs are selected from the diagonal elements at
the vertices of each square. The top graph in the figure displays the bearing lines projecting
from the quadruple units for a simulated source at location (2m,4m, 3m). To generate this
situation, the true TDOA values have been corrupted by additive noise with a standard
deviation of .01m. The points of closest intersection, t;i, and the final LI estimate are
shown along with their projections onto the xy-, xz-, and yz-planes. The bottom graph
in Figure 7.3 presents an enlarged overhead view of the intersection region alone. The

individual t;; locations are now visible and denoted by ‘x” and the corresponding normal
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vectors are plotted as dashed lines. For these 4 bearing lines, there are a total of (3) =6
normal vectors and 12t locations. The final locations estimate, 817, is indicated by the “*’
near the center of the graph, surrounded by the intermediate points of closest intersection.
In this example, the final estimate was found to deviate from the actual location by less

than 3cm in any dimension.

7.3 Closed-Form Estimator Comparison

As a means of evaluating the LI location estimator, the statistical characteristics of the LI
and spherical interpolation localization methods were compared through a series of Monte
Carlo simulations modeled after those conducted in [41]. The experimental set-up, a nine-
sensor orthogonal array with half-meter spacings and a source located at a range of hm
with equal direction angles, is depicted in Figure 7.4. The true TDOA values (2.2) were
corrupted by additive white Gaussian noise. 100 trials were performed at each of 11 noise
levels ranging from a standard deviation the equivalent of 10™°m to 10~ m when scaled by
the propagation speed of sound in air. The LI method partitioned the array into 4 square
sensor quadruples and required the evaluation of 8 TDOA estimates, one for each diagonal
sensor-pair. The SI method required that all the TDOA values be relative to a reference
sensor. The sensor at the origin was chosen for this purpose and the TDOA for each of the
remaining 8 sensors relative to the reference were calculated. In addition to calculating the
LI and SI estimates, the ML estimate, 87po4, was computed via a search method with the
initial guess set equal to the true location.

Figures 7.5 and 7.6 summarize the results of these simulations. The top plot in Fig-
ure 7.5 presents the sample bias for the estimated source bearing and range for each of

the estimation methods as a function of the level of noise added to the true TDOA values.
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Figure 7.3: Illustration of Linear Intersection Algorithm. The top graph shows the bearing
lines projecting from the quadruple units for a simulated source at location (2,4, 3) along
with the s7; and t;; locations and their projections onto the xy-, xz-, and yz-planes. The
bottom graph is an enlarged overhead view of the intersection region alone. The individual
t;; locations are now visible and denoted by ‘x’s, their corresponding normal vectors by
dashed lines, and the final LI estimate by a **’.
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Figure 7.4: Closed-Form Estimator Comparison: The nine-element orthogonal array used
for the comparison simulations. All distances are in meters.

While each of the methods exhibits some degree of bias in the noisier trials, the situation
is most extreme for the SI method. This tendency for the SI method to consistently bias
its estimates towards the origin was noted by the authors of [41]. The SI algorithm may
be shown to approximately minimize an error criterion similar to that of the discarded Jp
LS error detailed in Section 3.8. Indeed, the simulation results found here for the SI esti-
mate are very similar to those of the §p estimator used in conjunction with the analysis in
Section 3.5. The LI method performs comparably to the ML estimate for all but the most
extreme noise conditions. The bottom plot Figure 7.5 shows the sample standard devia-
tions. For the standard deviation of the bearing estimates, a trend similar to the bearing
bias is observed. The SI method’s performance decays rapidly for noise levels above 10~2m.
However, in terms of the range, each of the closed form estimators displays a smaller vari-
ance than the ML estimator at the higher noise conditions. This is a consequence of the
estimator biases observed previously. Finally, In Figure 7.6 the root-mean-square errors
(RMSE) are illustrated. Once again, the LI method closely tracks the ML estimator in

all but the most extreme condition while the SI method exhibits a marked performance
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decrease in both bearing and range for moderate and large noise levels.

Simulations performed over a broad range of source positions exhibit trends similar
to those in Figures 7.5 and 7.6 The LI estimator is consistently less sensitive to noise
conditions and possesses a significantly smaller bias in both its range and bearing estimates

when compared to the SI estimator.

7.4 Discussion

A closed-form method for the localization of source positions given only TDOA information
has been presented. It was shown to be a robust and accurate estimator, closely modeling
the ML estimator, and clearly outperforming a representative algorithm.

From an implementation standpoint, the constraint that the array be composed of rect-
angular 4-element sub-arrays is not problematic for typical room-oriented microphone-array
applications. It is an advantage of the LI method that localization in 3-space can be per-
formed with a 2-dimensional array. The SI method as well many similar approaches requires
that the matrix of sensor locations be full-rank. This necessitates the use of a 3-dimensional
sensor for localization in 3-space. Also, since the LI method does not require the estima-
tion of delays between sensors other than those in the local sub-array, the sub-arrays can be
placed far apart and delay-estimation processing can be performed locally. The SI algorithm
evaluates all TDOA estimates relative to a single reference sensor.

In Chapter 9 The linear intersection method will be used in conjunction with several
real microphone-array systems. It will be shown to be an effective source localization
procedure when used alone or as a means of providing initial search conditions to the more

computationally demanding search-based algorithms.
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Figure 7.5: Closed-Form Estimator Comparison: Sample bias and standard deviation plots

for the three estimation procedures, LI, SI, and ML, as a function of the level of noise added
to the true TDOA values.
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Chapter 8

A Practical TDOA Estimator for

Speech Sources

A fundamental requirement of the source-localization procedures presented in the preceding
chapters is the ability to determine the relative time delay between signal arrivals at distinct
sensor locations. The precision and robustness of these TDOA estimates are crucial factors
in the quality of an associated source-location scheme. In addition to high accuracy, these
delay estimates must be updated frequently in order to be useful in practical tracking
and beamforming applications. Furthermore, any such estimator would also have to be
computationally non-demanding to make it practical for real-time systems.

In general, correlation strategies have been used for estimating the time delay between
signals received at two spatially distinct sensors. Specifically, the cross-correlation function
of the two signals is computed, filtered in some “optimal” sense, and the maximum is found
with a peak detector [74, 75, 76]. While the filtering criteria and the methods used for
peak detection vary considerably, these techniques are all based on maximizing the cross-

correlation function. Estimate resolution is limited by the sampling period unless some kind
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of interpolation method is employed. These methods range from upsampling the signal to
parabolic fitting of the cross-correlation function [74]; for each there is a general trade-off
between the increased accuracy achieved and the computational expense incurred by the
procedure. This genre of delay estimation has been applied to the same problem addressed
in this work, source localization in the radiation field of a microphone sensor array.

In this chapter a frequency-domain TDOA estimator appropriate for a speech source
application is described. It is designed to provide high resolution estimates in a single-
source environment, to have minimal computational requirements, and to be capable of
providing independent delay estimates many times (= 70) a second. The TDOA estimator

is evaluated and shown to be extremely accurate under a wide range of signal conditions.

8.1 Mathematical Development

Consider two microphone receivers in the acoustic-field of a single speech source. Assuming
that microphone placement is such that relative signal attenuation between the microphones
due to propagation distance and source size and orientation are negligible, the sampled

received signals, r1(/) and rz({), may be expressed as:

r(l) = sl)+m()

ro(l) = s(l—1)+n2(l) (8.1)

where [ is the discrete-time index, ny (/) and ny (/) are background noise sources with known
statistical characteristics and assumed to be uncorrelated to s(!) and each other, and 7 is
the TDOA in sample units of the source wavefront between the receivers.

The problem here is to estimate 7 from finite-duration sequences of the processes rq({)
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and rz(l). In typical situations this delay will vary significantly with time, due to the physical
movement, (e.g. body and head motion) of the audio source. Measurement consistency is
affected by the time-varying nature of the source signal. For instance, a typical speech
source may only be considered statistically stationary over a short time frame (= 30 ms)
and will have periods of signal production interspersed with durations of silence. For these
reasons it is advantageous to estimate 7 periodically using a small analysis window and to
avoid inter-frame averaging in the signal analysis. In what follows, a restriction is imposed
that the proposed TDOA estimator must compute an independent estimate of 7 from a
single 20-30 ms frame of data.

The DFT coefficients of the N-point, windowed received signals in (8.1) and their cross-

spectrum are given by

Ri(k) = W(k)x (S(k)+ Ni(k))
Ry(k) = W(k)* (S(k)e™ " + Ny(k))
Grir (k) = Ri(k)Ro(k)
where W (k) is the N-point DFT of the analysis window, k = 0,1, ..., %, Wy = %, and *
and ' denote the convolution and complex conjugate operators, respectively. The TDOA
T now appears as part of the complex phase term and as such, is not restricted to integer

values. The phase of the cross-spectrum, may be expressed as

0r = arg(GRryR, (k) = wipT + €. (8.2)

Here ¢, the phase deviation, is a random variable that summarizes the contributions of the

noise terms and analysis window to the overall phase term at each discrete frequency. Given
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that ¢ is zero-mean for all k& (demonstrated in Table 8.1), the expected value of the phase
term, 6y, is directly proportional to the discrete radian frequency, wg, with the constant of

proportionality being the signal delay, 7. i.e.

E0;) = wit

In this sense 7 may be interpreted as the slope of the line that “fits” the series of phase
terms. Assuming that the ¢; terms are uncorrelated (In the case of Gaussian noise sources,
this assumption is valid for the wideband speech signals and observation intervals considered

here. See [77].), the best linear unbiased estimator of 7 is given by the expression [78]:

SN Wiy,

F =
N_1 2
Yop1 Wiwy

(8.3)
where Wy are weighting coefficients equivalent to the reciprocal of the phase deviation

variance, i.e.

1

var(ex)

W, =
The variance associated with the estimate 7 is calculated from:

1
var(f') = N—111r o (84)
ko1 Wi}
The above analytical expression for calculating 7 has several advantages over its time-
domain counterpart. It is computationally simple, does not necessitate the use of search
methods, and, as will be shown, is capable of intra-sample precision. In addition, if the €

terms are Gaussian, 7 can be shown to be the minimum variance unbiased(MVU) estimator

of 7 as well [78].
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8.1.1 Calculation of Estimator Parameters

In practice, the variance terms required for (8.3) and (8.4) are unavailable a priori and
must be evaluated directly from the data. A means for computing these variances using the
magnitude-squared coherence of the spectra derived from overlapping windowed segments
is given in [79]. The conditions required for ¢, to be Gaussian and thus 7 to be the MVU
estimator are stated in [80]. A limitation of the method for this application is the long-term
averaging required for the coherence estimate. For instance, with a 20 kHz sampling rate
and half-overlapping 25.6ms Hanning windows, the estimate is shown to be equivalent to
the maximum-likelihood estimate when averaged over two seconds of data. This analysis
interval vastly exceeds the independent analysis constraint and is clearly inappropriate for
speech signals. A sub-optimal variation of this technique which restricts coherence-estimate
analysis to a single 20-30ms time interval will be considered in Section 8.2.

Given these analysis restrictions, an appropriate alternative is to estimate the error

variance independently for each data frame using the following approximation.

Alk A2k
2 —I_ 2
| Ri(k) |7 | Ra() |

var(eg) =

(8.5)

Where the Ayr and A9 coeflicients are derived from the frequency-dependent background

noise power at each receiver as follows:

.1 2

Alp = }g%oj;|M1](k)|
17

) 2

Aok = }ggoj;ley(k)l

with My (k) and My;(k) being the DEFT coefficients of individual windowed frames of the
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S/N || experimental mean(¢;) | experimental var(eg) | estimated var(e)
(dB) (radians) (radians)? (radians)?

36 .0016 .09 .05

18 -.0052 52 .36

12 -.0031 .84 71

0 -.0235 1.77 1.96

Table 8.1: Experimental mean, variance and estimated variance of ¢; as a function of S/N
ratio

background noise sources nq(l) and ny(l). The variance estimate may be interpreted as
the sum of the approximate inverse S/N ratios at each receiver. Equation (8.5) was de-
rived assuming relatively large S/N ratios and that the M;j;(k) and Msy;(k) terms have
uniformly random phases. With the phase deviation variance approximated in this manner,

the weighting coefficients used in (8.3) and (8.4) are calculated from:

e L Rk [ Ra(k) I
Wk o U&T‘(Gk) N A1k| Rz(k) |2 —|— A2k| Rl(k) |2 (86)

Data showing the validity of the assumptions made on the ¢; random variables and
the accuracy of (8.5) in estimating the true error variance are presented in Table 8.1.
The results here have been generated with a Gaussian white random source (variance o2)
delayed 1 sample relative to the receivers and then corrupted by uncorrelated additive white
Gaussian noise sources (variance ¢2). The signals were sampled at 20kHz, segmented into
200 25.6ms (512-point) Hanning windows, zero-padded, a 1024-point DFT implemented to
generate the spectral coefficients, and the ¢ terms were then calculated via (8.2). The choice
of this window type and DFT length is based upon an analysis presented in [81]. The 2

left-hand columns in the table report the sample mean and variance of the ¢; terms for each

of the S/N conditions. The right-hand column lists the predicted variance of ¢ calculated
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from (8.5). As the table illustrates, the zero-mean assumption for ¢; is appropriate for
the entire range of signal conditions. Furthermore, the error variance estimated using (8.5)

accurately models the experimental variance.

8.1.2 Application Considerations

A practical issue that must be considered when applying the proposed estimator is that of
phase continuity. The cross-spectrum phase ) as evaluated by (8.2) is modulo 27 whereas
the delay estimator (8.3) requires a phase angle that varies in a continuous linear fashion
with the radian frequency. This situation necessitates the use of a “phase-unwrapping”
algorithm to remove the 27 discontinuities from the initial ; before evaluating 7. Several
algorithms for this purpose are available from cepstral processing applications, [82] is typical.
An alternative solution to the phase discontinuity problem is given in [81]. The “phase-
unwrapping” technique used in the following experiments is along the lines of [82] but less
general since the phase difference function is assumed to be linear.

Consider a frame of modulo 27 cross-spectrum phase terms, 6y, and their associated
weighting coefficients, Wi A reordering of the frequency components with respect to the
weighting terms (high to low) is performed. As the linear fit in Equation (8.3) is performed,
progressively summing over the the ordered set of frequency components, an intermediate
slope estimate may be used to predict the value of the next phase term. The measured value
of the phase angle is unwrapped around this predicted value (by adding an integer multiple
of 27 to minimize their difference) before it is included in the linear-fit sums. A second
pass is performed to correct values of 8, that may been improperly unwrapped due to the
variation of the slope estimate over the course of the linear-fit/phase-unwrapping process.

Because the unwrapped value of the initial phase term in the series is undetermined, this
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Figure 8.1: Illustration of the Linear-Fit/Phase-Unwrapping Process: Plot (A) graphs the
weighting coefficients as a function of frequency. Plot (B) displays the modulo 27 phase
terms. Plot (C) shows the phase values unwrapped around the line with a slope correspond-
ing to the final TDOA estimate. Four highly weighted frequency bins have been indicated
by a “*’ to illustrate their contribution to the line-fitting procedure.
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process must be repeated several times with different potential unwrapped versions of this
starting phase. The case that provides the best linear-fit to the now unwrapped phases, 0;,
provides the final TDOA estimate.

Figure 8.1 illustrates the results of this linear-fit/phase-unwrapping process. Plot (A)
graphs the weighting coefficients, W), estimated from a 25.6ms segment of voiced speech
over a frequency range of 100Hz to 5kHz. Four highly weighted frequency bins have been
indicated by a “*’. Plot (B) displays the measured modulo 27 phase terms, ;. Note that
while these phase terms exhibit a linear trend, there is an apparent discontinuity between
1500Hz and 2000Hz. Plot (C) shows the unwrapped phases and the line with a slope
corresponding to the final TDOA estimate. The line provides a close fit to the to the
highly weighted phases as indicated by the proximity of the ‘¥’ symbols to the line. Sizable
phase deviations from the estimated line generally occur only for those frequency bins with
minimal weighting coefficients.

Another practical issue that must be addressed is microphone placement. In a near-field
setting, such as a room, excessive separation between the microphone receivers may result
in significant deviations from the the source-model assumptions which have the potential of
seriously degrading the quality of the delay estimate. Deviations from the model may be due
to non-uniform radiation of the source, or unequal signal attenuation and filtering due to
the acoustics of the room. Also the short window length employed in the signal processing
imposes a practical limit on the maximum TDOA and therefore the sensor separation. If
the relative delay between two channels is an appreciable fraction of the window length one
can no longer be confident that there is good correlation between the segments of the source
signal captured by the two sensors. A feedback mechanism to realign the time sequences by

repeating the windowing process with skewed time indexes is not computationally feasible
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on a frame-by-frame basis. One means of overcoming both these problems is to limit the
microphone separation distance. This minimizes near-field radiation effects and restricts the
range of potential signal TDOA’s. The upper bound for microphone separation distances

is dictated by the physical environment and location of signal sources.

8.2 TDOA Estimator Comparison

8.2.1 Experiment # 1

Two computer simulations were performed to evaluate the accuracy of the TDOA estimator
described in the previous section. In the first, a single phoneme (the /e/ in ‘ketchup’) of
20kHz sampled speech was bandlimited to the range 100Hz to 5kHz and isolated with a
25.6ms Hanning window. Relative delays of 1, 5, and 10 samples were introduced to simulate
a second sensor and uncorrelated white Gaussian noise added to both channels. The noise

variance was adjusted to create the appropriate S/N ratio. Here S/N ratio is defined as:

1 11y S0
> [wl)n(l)]

for a finite length window w(/). A 1024 point FFT was computed for each signal. The
delay estimate, 7, and the predicted variance of 7 were then calculated from (8.3) and
(8.4), respectively, using the weighting coefficients given by (8.6). Table 8.2 lists each
estimate’s sample mean and standard deviation determined from 100 trials at each S/N
condition. The values in parentheses represent the averages of the predicted standard
deviation. For comparison purposes, the least-squares (LS) delay estimate given in [80] was
also calculated. The LS estimator involves a weighted line fit of the phase data but differs

from the proposed delay estimator in a key respect; the weighting coefficients and phase
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sample | S/N Proposed Estimator LS Estimator
delay | (dB) || mean | std. dev. (predicted) || mean | std. dev.

36 1.00 017 (.012) 1.00 .014

1 24 1.00 .036 (.024) 1.00 .030

12 1.01 .070 (.048) 1.00 077

0 1.00 162 (.091) 99 233

36 5.00 .020 (.012) 4.97 021

5 24 5.00 .032 (.024) 4.98 .036

12 5.01 074 (.048) 4.99 077

0 5.00 177 (.091) 4.97 .206

36 10.00 017 (.012) 9.93 028

o 2t 000 1036 (.024) 9.93 | .04l

12| 10.00 067 (.048) 0.07 | .087

0 10.03 182 (.091) 9.99 .265

Table 8.2: Results of TDOA Estimator Experiment #1 (Single phoneme): Sample Mean
and Standard Deviation of the Proposed TDOA Estimator and the LS TDOA Estimator
for varying S/N ratios and sample delays. All values are in terms of samples at 20kHz.

information required for (8.3) and (8.4) are derived via the multiple-window magnitude-
squared coherence estimation procedure referred to in the preceding section. While the
merits of this approach are apparent for long-term statistically and physically stationary
signal sources, the expectation is that given the time constraint of the analysis interval,
the LS estimator will be at a disadvantage. A number of scenarios were considered for
the partitioning of the 25.6ms speech segment required for the coherence estimation. The
most favorable, which was used to generate the LS estimator results reported in Table 8.2,
incorporated 7 half-overlapping 6.4ms subwindows.

While the proposed TDOA estimator and the LS estimator perform comparably for
the small-delay, high-S/N conditions, the experimental results distinctly favor the proposed
estimator for the S/N=0dB case and for the larger sample delays. The LS estimator exhibits
a sizeable bias and increased standard deviation at delays of 5 and 10 samples. Part of this
effect may be attributed to window misalignment; these delays represent a sizeable fraction

of the 6.4ms subwindows employed by the LS estimator. The proposed estimator with a
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single 25.6ms window does not display a marked bias or inflated standard deviation at these
larger sample delays. Finally, note that the standard-deviation predictor figures from (8.4)
in parentheses accurately model the measured estimator variance for all but the S/N=0dB

case.

8.2.2 Experiment # 2

For the second simulation, 100 different frames of randomly-segmented speech representing
a wide range of phonemes were prepared under similar conditions to those of the previous
experiment. The sample means and standard deviations for the proposed TDOA estimator
and the LS estimator are given in Table 8.3. In general the variances measured in this
experiment are greater than those reported for the single-phoneme experiment. This is most
likely due to the varying spectral content of the phonemes used in the second experiment.
The /e/ phoneme used in the first experiment is strongly voiced and has very good S/N
at the formant frequencies, and thus is well suited to the frequency-dependent weighting
used in the delay estimator. In the second experiment the phonemes used cover a broad
variety, many of which do not have spectral characteristics quite as favorable for the delay
estimation algorithm.

A comparison of the TDOA estimators’ relative performance in this second simulation
reveals trends similar, but more pronounced, than those demonstrated in the previous
experiment. The larger LS estimator bias is evident even at the high S/N conditions and
the variance is larger than that of the proposed estimator’s even for the low S/N conditions.
The difference in the variances is particularly large for the cases with 5 and 10 sample
delays and high S/N. The proposed delay estimator outperforms its counterpart for all the

simulation conditions and is relatively insensitive to the differing sample delays although it
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sample | S/N || Proposed Estimator LS Estimator
delay | (dB) || mean | std. dev. mean | std. dev.

36 1.01 .059 .98 061

1 24 1.00 144 .96 .205

12 1.00 405 .98 .631

0 .90 909 .94 1.101

36 4.99 .057 4.86 114

5 24 5.01 147 4.85 .243

12 4.98 494 4.77 .641

0 4.83 1.208 4.74 1.254

36 9.99 061 9.75 228

10 24 9.97 135 9.70 462

12 10.06 407 9.70 731

0 9.90 .999 9.29 1.538

Table 8.3: Results of TDOA Estimator Experiment #2 (100 frames of speech): Sample
Mean and Standard Deviation of the Proposed TDOA Estimator and the LS TDOA Es-
timator for varying S/N ratios and sample delays. All values are in terms of samples at
20kHz.

does begin to show an estimate bias for the S/N=0dB case.

The results of these experiments clearly show that the proposed TDOA estimator has
superior performance properties in comparison to the Least-Squares TDOA estimator pre-
sented and is capable of intra-sample precision. For instance, at S/N > 24dB, the stan-
dard deviation of the estimate is less than .15 samples for all the conditions tested. With
regard to computational considerations, the proposed estimator again has a marked advan-
tage over its LS counterpart. For each delay estimate generated in these simulations, the
bulk of the proposed delay estimator’s computational load is contained in the 2 1024-point
FFT’s. The remaining elements, such as the calculation of the phases and weights, the
phase-unwrapping, and final delay estimation, require computation equal to approximately
one-half of a 1024-point FFT. Roughly speaking, the total number of floating point opera-

tions required for a single TDOA estimate is equivalent to that of performing 2.5 1024-point
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FEFT’s. The LS estimator used in these experiments needs approximately 3 times this num-
ber of operations. A similar correlation-based delay estimator would require a minimum of

3 FFT’s to compute the cross-correlation function alone.

8.3 Source Detection with the TDOA Estimator

The TDOA estimate 7 is readily shown to be the delay value that minimizes the weighted-

least-squares error:
N-1 ) ,
Error(r) = Z Wi (8, — wiT)
k=1

2

and

7 = argmin Error(7)
T

This LS error may be interpreted as the ’line fit” error associated with the unwrapped
phase terms, 0;, and the line with slope 7. The minimum error, Error(7), provides a useful
statistic for evaluating the significance of the TDOA estimate 7. A relatively small error
indicates that the single source model is applicable to the windowed signal frame and that
7 is a reliable measure of the true TDOA. Large values demonstrate that the estimated
TDOA is not valid, either through imprecision or because of an inconsistency between the
data and the single source model. This would be expected, for example, during silence
intervals. The effect may also be due to the presence of simultaneous interfering sources, in
which case the derivation model is inappropriate. A further possible cause could arise from
severe reverberations. In acoustically live environments, the TDOA estimate possesses an
increased inaccuracy similar to the effects of diminished SNR conditions [83]. Each of these
situations is manifested through an enlarged LS error.

In practice, this detection statistic is calculated from a normalized version of the weighted
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LS error:
N-1 ' 2
kE Wi (0, — wkT)

Derror = A =1

— (8.7)

> W

k=1

The appearance of the denominator term is necessary to adjust the error to a uniform scale

across a range of signal SNR situations. The constant A, discussed below, is used to regulate

Derror relative to a precalculated non-source error. The use of line-fit error as a detection

statistic is outlined in [80]. However, the statistic presented there is an unweighted version

of (8.7) and the subsequent decision rule was found to be ineffective for speech signals.
During periods of silence, the received sensor signals are assumed to be uncorrelated

with known spectral-density coefficients, A1; and Agg . The cross-spectrum phase, 8, and

the corresponding phase deviation terms, ¢, are uniformly distributed between —m and

7 [84]. Under these conditions the second-order statistics for € are:
E(e | silence) =0 E(ci | silence) = 7%/3
and the predicted expectation of Derror simplifies to:
E(Derror | silence) = A(x?/3) (8.8)

However, when the TDOA estimator encounters a silence frame, the estimation procedure
produces an arbitrary value of 7 that minimizes Error(r). The actual values of Derror
produced from this process are biased below the predicted expectation A(7?/3). The de-
gree of bias is dependent upon the power spectral density of the noise and the frequency
components included in the TDOA estimate summation.

In practice, given an interval (= 1 — 2s) of background silence conditions, a condition-
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dependent correction term may be evaluated to produce a uniform Derror statistic. This
is done by estimating the TDOA and Derror values for the silence interval. The sample
mean and standard deviation for Derror are then computed and the constant A is selected

to scale the statistic mean to 1. i.e. choose A such that

Derror =

As an example of this procedure, two-second (40,000 samples at 20kHz sampling) un-
correlated sequences were generated from equal-power, white, Gaussian noise processes to
simulate background silence conditions at a pair of sensors. TDOA and Derror estimates
were prepared using a half-overlapping 512-point Hanning window, a 1024-point FFT, and

a frequency bandlimit of 100Hz to 5kHz. The normalization constant was calculated to be

A= ;52/%, indicating that the actual statistic mean is roughly three-fourths of that predicted

by (8.8). The final second-order statistics for the scaled detection statistic were:

E(Derror | silence) = 1

std(Derror | silence) = .132

Once the Derror silence statistics have been determined, a detection threshold may be
calculated for a predetermined false-alarm rate, . Using the central-limit theorem [56] to
make the simplifying assumption that Derror is approximately Gaussian during the silence

intervals, the threshold is found from the cumulative unit normal distribution function,
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®(z), and the decision rule is stated as:

Derror < Do source present

Derror > Do source absent

Here s is the standard deviation of the scaled silence-only detection statistic. For the above

example, some false-alarm rate/detection threshold pairs are:

a=10"? = Dy=.69
a=10"" = Dy=.59
a=10"" = Dy=.52
a=10"" = Dy= .48

8.4 TDOA Estimator Demonstrations

8.4.1 Single, Moving Talker

Figure 8.2 illustrates the elements of the TDOA estimation procedure for a single, mov-
ing speech source. The talker was recorded by a pair of pressure-gradient microphones,
placed 20.5cm apart, and digitally sampled at 20kHz. Plot (A) in the figure represents
1.25s of speech, the utterance “One Two Three”, received at one of the microphones. The
background noise statistics and detection normalization constant were estimated using a 1s
sampling of silence conditions. In this case, the background noise is dominated by the whirr

from a computer fan in the vicinity. While not creating the ideal silence conditions, this
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does provide for a realistic testing scenario. Once again, TDOA estimates were evaluated
using the 512-point, half-overlapping Hanning window, a 1024-point DFT, and a frequency
band range of 100Hz to 5kHz. With these parameters, 97 independent analysis windows
are applied to the 1.25s speech segment. Plot (B) graphs the detection statistic, Derror, as
a function of the sample midpoint in each analysis window. A value of 1 in this plot corre-
sponds to a silence frame, while a 0 indicates an ideal source. The horizontal line represents
the detection threshold, Dy = .35, calculated from a desired false-alarm rate of .05. Note
how the frames with a Derror value below this threshold are aligned with the periods of
source activity in Plot (A), and conversely, the Derror values above the line are associated
with speech pauses. This demonstrates the effectiveness of the detection statistic in accu-
rately dichotomizing source/silence periods in the speech signal. Plot (C) shows the TDOA
estimates for those analysis frames in which a source was detected. The vertical axis in this
graph has been scaled by the speed of sound, ¢, so that the values represent the difference in
source propagation distance. The maximum absolute value on this scale corresponds to the
sensor separation distance, .205m. The TDOA estimates exhibit a continuous downward
progression throughout the segment. This indicates that the talker was moving relative to
the sensor-pair, crossing from one of the half-spaces delineated by the sensors’ perpendicular
bisecting plane, to the other. The small analysis window incorporated into the estimation
procedure allows for a high TDOA update rate, providing the time-resolution necessary to
effectively track moving sources. Finally, Plot (D) illustrates the predicted standard devi-
ation associated with each TDOA estimate. These figures have been scaled by ¢ and are
presented in meters. Each prediction figure is independently calculated using (8.4) for a
single analysis frame. The standard deviation is primarily a function of the signal SNR, and

the predicted figures trace out a curve that is roughly inversely related to the signal energy.
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(A) Received Signal: "One Two Three"
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Figure 8.2: TDOA Estimation for a single moving talker: Plot (A) illustrates the received
signal. Plot (B) shows the scaled detection statistic, Derror, relative to the & = .05 detection
threshold. Plots (C) and (D) track the TDOA estimates and their predicted standard
deviations for the detected source frames. Both plots have been scaled by ¢ to present these
values in terms of meters. The x-axis for each plot represents samples at 20kHz.

8.4.2 Multiple Talkers

In the previous demonstration, the detection statistic was incorporated into a source/silence
decision rule. However, the significance of the Derror value may also be applied as a means
for validating the consistency of the single source model that has been assumed in the
derivation of the TDOA estimator. This is especially useful in situations in which several
speech sources may be simultaneously active. In this context the Derror statistic detects

when an analysis frame contains speech from a single talker versus periods of multiple
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or no source activity. Typical speech patterns contain distinct intervals of active talking
interspersed with silence. For single-talker speech the average silence duration is on the
order of 120ms [85], equivalent to nearly 10 of the TDOA estimator’s overlapped analysis
windows. With conversational speech, fewer than 20% of the overall frames include more
than a single active talker [86]. Under these conditions, the TDOA estimator presented
here will have ample access to signal frames containing each of the active talkers speaking,
essentially, in isolation, and given the effectiveness of the detection statistic, will be able to
identify these valid frames.

To demonstrate the performance of the TDOA estimator in a multiple-talker scenario
three recordings were done with a pair of pressure-gradient microphones, separated by
16.5cm. The first two recordings were each done with a single source speaking continuously
at a distinct, fixed location. The third recording repeated the same two utterances, this
time simultaneously. Each of the speech signals was pre-recorded and played out by a
computer to insure synchronization from the individual to simultaneous scenarios. This
represents a particularly extreme two-talker case. Since the individuals are not engaging
in a conversation, but rather talking continuously and simultaneously, the signal overlap
is much greater than would be expected in a typical (polite) dialogue. Indeed, while the
individual recordings are quite clear, the dual recording is unintelligible. The background
statistics and TDOA estimation parameters were adjusted as in the previous example.

Figures 8.3 and 8.4 display the results of the TDOA estimation for 1s segments (77
analysis frames) of each recording with the false-alarm rate set at a conservative 1072 level.
Each of the individual recordings in Figure 8.3 exhibits a near constant TDOA throughout
the utterance. This indicates that the sources were positionally fixed and, because of the

difference in £ signs, were located on opposite sides of the sensor-pair perpendicular bisect-
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Figure 8.3: TDOA Estimation for Two Isolated Single Talkers: Plot (A) in each case
illustrates the time sequence of the received signals. The (B) plots show the scaled detection
statistics, Derror, relative to the & = 1072 detection threshold. The (C) and (D) plots track
the TDOA estimates and their predicted standard deviations for the detected source frames
in each recording. Again, the x-axis for each plot represents samples at 20kHz.
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(A) Simultaneous Received Signal
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Figure 8.4: TDOA Estimation for

recordings are denoted by ’.

Two Simultaneous Talkers: Plot (A) illustrates the
received signal. Plot (B) shows the scaled detection statistic, Derror, relative to the a =
1073 detection threshold. Plots (C) and (D) track the TDOA estimates and their predicted
standard deviations for the detected source frames. The bottom plot presents an enlarged
view of the TDOA estimates for all three recordings. The TDOA values for the individual
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ing plane. A few errant TDOA values are evident in each Plot (C) in the figure. These
are visible as deviations from the horizontal line that dominates each plot and are a result
of borderline detection misclassification during speech /silence transitions in the respective
signals. The recorded signal in Figure 8.4 appears to be the summation of the two signals in
Figure 8.3. The corresponding TDOA plot possesses a distinct bi-linear nature, consisting
of two horizontal rows at the levels found for the single source recordings. The detection
statistic in this case has effectively identified those frames in which a single source con-
tributes predominant energy and the subsequent TDOA estimate is a valid representation
of that source’s true TDOA. This is further verified by the bottom plot in Figure 8.4 which
shows an enlarged version of the TDOA estimates graphs for all three recordings. The

b

single source results are denoted by ’.” while the simultaneous recording TDOA values are

b

indicated by ’o’. Note how the ’0’ values overlap ’.” values during single source periods and

are absent during silence and when both sources are of comparable strength.

8.5 Discussion

The results of these experiments illustrate the ability of the TDOA estimator to provide
reliable source delay figures over a wide range of scenarios. The estimator is robust to
signal /noise conditions, capable of a high update rate necessary for tracking, and is able
to distinguish individual sources in a multi-party environment. Furthermore, the compu-
tational requirements of the algorithm are non-demanding, allowing for real-time hardware
applications. Because of these features, the estimator presented in this chapter is an ap-
propriate, if not ideal, means for generating the sensor-pair TDOA information required by

the source localization procedures detailed in this work.
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Chapter 9

Experiments with Real Systems

The source localization procedures detailed in the preceding chapters are evaluated through
a series of experiments conducted with two real microphone array systems: a 10-element
bilinear array mounted in a laboratory environment and a 14-element array consisting of
three autonomous units placed in a conference-room setting. In each case, several recordings

were obtained and processed offline.

9.1 Experimental Design

Figure 9.1 presents a flow chart of the procedures conducted in each of the localization
experiments presented in this chapter. At the top level, the time signals (sampled at 20khz
and digitized with 12-bit A/D converters) from the sensors were fed to TDOA estimation
blocks, one per sensor pair. The TDOA estimator presented in Chapter 8 was employed for
all of the experiments. The silence information and detection thresholds required by the
TDOA estimators were derived by processing a two-second segment of background noise.
The source-detection thresholds were calculated using a false-alarm rate of 107°. Within

each TDOA estimation block, the signals were bandlimited to the range 100Hz to 5kHz and
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Figure 9.1: Flowchart of Localization Experiments: An outline of the localization procedures
employed for each of the experiments presented in this chapter.

segmented into individual frames using a 512-point (25.6msec) half-overlapping Hanning
window. A 1,024-point FFT was applied, and the TDOA estimate, a variance figure, and
the detection error were calculated. Those frames possessing a detection error less than the
specified threshold were declared valid, and their respective TDOA estimates and variances
were made available to the localization algorithms. No TDOA information is reported for
non-valid frames.

The closed-form linear intersection (LI) location estimate of Chapter 7 is evaluated first.
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The LI method requires that, for each of the quadruple sensor units, both sensor-pair TDOA
estimates must be available to generate a bearing line. While the LI method can generate an
estimate given just two bearing lines, a minimum of three valid TDOA pairs, corresponding
to three bearing lines, were required for the LI processing. This restriction was imposed
to insure some redundancy in the localization algorithm and provide more reliable results.
The LI algorithm is guaranteed to produce at least six points of closest intersection which
were then weight-averaged to produce the final location estimate. For those frames not
satisfying the three-pair valid TDOA limit, no LI estimate was evaluated.

Each reported LI estimate was then subjected to one of the source-detection tests de-
tailed in Chapter 4. Given that the TDOA estimators evaluate a source/non-source deci-
sion based upon the pairs of time signals, this second detection test may be interpreted as
a means of verifying the location estimate’s significance. Either the general source consis-
tency test or the empirical detection test is appropriate under these circumstances. With
the experiments that follow, each test will be examined. The consistency test is designed
with a detection rate of .99 while the empirical test employs a 1° cutoff.

The TDOA and DOA localization schemes of Chapter 3 were processed next. For those
frames in which an LI estimate has been calculated and certified as valid, the LI location
was used as the initial value for the search routines required in minimizing the Jrpo4 and
Jpoa LS-error criteria. When a valid LI estimate was not available, this initial value was
established as the search region’s center. The TDOA- and DOA-based localizers do not
possess a TDOA valid-pair restriction as does the LI method, however they do require a
minimum of three valid TDOA estimates from a set of non-collinear sensor pairs to identify
a unique location in 3-space. For added reliability this limit is set at four. Any frames

not possessing this minimal number of valid TDOA estimates are left unreported. The
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TDOA and DOA locations that were estimated were then subjected to a source detection
test similar to that performed on the LI estimate.

The LI, TDOA, and DOA location estimates declared valid by the source detection test
are reported as the final location estimates. As a final analysis, the error region associated
with each estimate is analyzed via the formulae derived in Chapter 5. While the derivation
is expressed in terms of the Jrpo4 and Jpp 4 error criteria, it is applied to the LI estimate

as well.

9.2 A 10-Element Bilinear Array System

The 10-element bilinear array represents a scaled realization of the bilinear array first in-
troduced in the simulations of Section 3.5. The array itself consists of pressure-gradient
microphones mounted in a wire mesh at .25m intervals along two parallel rows. This struc-
ture is horizontally centered at a height of 1.58m along one wall of a 3.0m X 3.5m enclosure
as illustrated in Figure 9.2.

Approximately 70% of the surface area of the enclosure walls is covered with 7.5cm
acoustic foam, the 3m ceiling is untreated plaster with large semi-cylindrical cavities, and
the floor is light carpet over concrete. The reverberation time within the enclosure is
approximately 250ms. The enclosure is a partially walled-off area contained within an
acoustically-untreated workstation lab. The primary source of background noise in the
recording area is computer equipment located both within the experimental enclosure and
in the room surrounding the enclosure.

Sensor pairs consist of the eight diagonally adjacent microphones (i.e. sensors 1 and
4, 2 and 3, 3 and 6, 4 and 5, etc.) for a total of 8. The 4 sensor quadruples 1-2-3-4,

3-4-5-6, 5-6-7-8, and 7-8-9-10 obey the bisection-orthogonality constraint required by the
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Figure 9.2: 10-Element Bilinear Array System: Illustration of the array set-up within the
experimental enclosure. The array is horizontally centered on the near wall at a height of
1.58m.

LI algorithm.

9.2.1 Experiment #1: A Source Grid

This first experiment evaluated the performance of the localization schemes over a regular
grid of positions within the enclosure. The experimental locations were spaced at .5m inter-
vals along the axis of the array, x, and 1.0m intervals in the direction normal to the array,
y. The symmetry of the array-enclosure setup allowed for two distinct heights. Locations
on the left-side of the grid were placed at the height of the array midline, 1.58m, while the
right-side was at 1.08m. These heights correspond to those of standing and sitting talkers,
respectively. There were a total of 18 test locations.

A loudspeaker was used to play back a recording of the two-second spoken phrase “h-e-
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i-n-z”. The transducer had a 5cm diameter cone and was contained in an acoustically and
sealed enclosure 17cm on a side and 8cm deep. The front baffle of the speaker enclosure was
covered with sound absorbing foam. At each location the speaker was oriented toward the
center of the array and the recorded phrase was simultaneously played back and recorded
by the 10 microphones. The synchronization was achieved via computer control. The peak
recorded signal-to-noise ratio ranged between 5 and 30 dB, varying as a function of speaker
location and orientation relative to the microphone in question.

Figure 9.3 contains overhead plots of the location estimates generated by the three
localization procedures and validated by each of the two source detection tests. The left-
hand column graphs employed the statistical source consistency detection test, while those
in the right column incorporated the empirical detection test. The location estimators are
organized by row. The LI, TDOA, and DOA estimates are found in the top, middle, and
bottom rows, respectively. Individual location estimates are denoted by ‘.’, the microphones
by ‘o’, and speaker positions as rectangular boxes. The plots represent a projection of each
of these elements onto the xy-plane of the enclosure. The two distinct heights are indicated
by the dashed rectangular regions.

These results are quantified in Tables 9.1 and 9.2. For each of the 18 speaker positions
and three location estimators, the number of valid frames detected by each procedure is
listed along with the mean location and total standard deviation of the estimated clusters.
Table 9.1 presents the totals associated with the source consistency detection test and
Table 9.2 contains those for its empirical counterpart. All locations are presented as ordered
triplets corresponding to the coordinate system specified in Figure 9.2. The total standard
deviation is calculated from the square root of the trace of the estimated covariance matrices.

For the windowing parameters applied in these experiments, there are 77.5 independent
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Figure 9.3: Bilinear Array Experiment #1: Clusters of valid location estimates for the three
location estimators, LI, TDOA, and DOA. The plots in the left column were generated using
the statistical source consistency test while those in the right column employed the empirical
detection test. The actual speaker location is indicated by a box while the individual
estimates are denoted by ‘.’. Each graph represents an overhead view of enclosure with the
points projected onto the xy-plane. The heights are indicated by the dashed rectangular
regions.
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Results for Consistency Detection Test

Speaker LI Localization TDOA Localization DOA Localization

Location valid mean std |valid mean std |valid mean std

) ) || ) Gy () fem)| () (o) (m) fem)| () (xv) (m)  (em)
(0.25,1.00,1.08)|| 22 (0.44,0.99,1.14) 14.2 | 37 (0.42,0.97,1.11) 39.9| 36 (0.42,0.99,1.10) 40.0
(0.25,2.00,1.08)|| 28 (0.46,1.71,1.20) 13.8 | 39 (0.48,1.81,1.22) 41.8| 39 (0.48,1.82,1.22) 42.2
(0.25,3.00,1.08)|| 16 (0.59,2.31,1.30) 57.7 | 28 (0.67,2.22,1.33) 73.9| 27 (0.66,2.27,1.32) 73.0
(0.75,1.00,1.08)|| 32 (0.87,1.02,1.14) 10.2 | 43 (0.86,1.01,1.14) 11.1| 42 (0.86,1.02,1.14) 9.0
(0.75,2.00,1.08)|| 39 (0.86,1.80,1.18) 18.8 | 53 (0.89,1.79,1.22) 25.6| 52 (0.89,1.81,1.22) 27.6
(0.75,3.00,1.08)|| 21 (0.89,2.47,1.23) 12.0 | 38 (1.02,2.33,1.21) 61.6| 37 (1.00,2.37,1.21) 56.0
(1.25,1.00,1.08)|| 46 (1.24,1.04,1.13) 4.8 | 63 (1.26,1.05,1.14) 10.3| 55 (1.26,1.07,1.14) 11.0
(1.25,2.00,1.08)|| 34 (1.24,1.82,1.18) 15.1 | 52 (1.25,1.81,1.20) 15.2| 52 (1.25,1.82,1.20) 15.1
(1.25,3.00,1.08)| 24 (1.24,2.49,1.25) 37.3 | 37 (1.26,2.43,1.26) 59.2| 36 (1.26,2.46,1.27) 58.3
(1.75,1.00,1.58)| 48 (1.76,1.05,1.58) 9.7 | 57 (1.77,1.06,1.57) 15.7| 56 (1.77,1.08,1.57) 16.0
(1.75,2.00,1.58)|| 35 (1.76,1.80,1.62) 34.4 | 51 (1.78,1.83,1.70) 49.7| 51 (1.77,1.85,1.70) 48.3
(1.75,3.00,1.58)|| 19 (1.76,2.52,1.63) 17.6 | 36 (1.71,2.42,1.58) 55.0| 36 (1.71,2.43,1.59) 53.3
(2.25,1.00,1.58)| 33 (2.16,1.00,1.57) 7.5 | 45 (2.17,1.01,1.57) 9.4 | 40 (2.17,1.02,1.57) 9
(2.25,2.00,1.58)|| 24 (2.15,1.78,1.60) 12.0 | 36 (2.07,1.77,1.59) 40.9| 36 (2.07,1.78,1.59) 40.4
(2.25,3.00,1.58)|| 19 (2.04,1.95,1.61) 112.8| 35 (2.04,2.27,1.63) 59.8| 35 (2.04,2.28,1.63) 59.1
(2.75,1.00,1.58)|| 20 (2.51,0.96,1.55) 16.7 | 30 (2.64,1.05,1.55) 68.9| 29 (2.64,1.07,1.55) 70.3
(2.75,2.00,1.58)|| 22 (2.54,1.71,1.59) 254 | 34 (2.43,1.64,1.63) 61.1| 34 (2.43,1.66,1.63) 60.4
(2.75,3.00,1.58)|| 16 (2.51,2.39,1.62) 33.9 | 28 (2.45,2.30,1.55) 75.1| 27 (2.49,2.36,1.62) 53.4

Table 9.1: Bilinear Array Experiment #1: Numerical comparison of location estimates
detected with the source consistency detection test. For each of the three location estimators
(LI, TDOA, and DOA) plotted in Figure 9.3, the number of valid frames is given for each
speaker location along with the mean location and total standard deviation of the estimated
cluster.

analysis frames per second of recorded signal. The two-second recordings used here therefore
contain 155 analysis frames. The number declared valid is a function of the speech signal, the
recording conditions, the localization scheme, and the detection criterion. The utterances
and their playback volume are identical in each case. However, the SNR of the received
signals diminishes as the source-sensor distance is increased. Subsequently, valid source
detection in the TDOA and location estimators becomes less frequent as the source range is
enlarged. This trend is evident in Figure 9.3 and verified by Tables 9.1 and 9.2. In general,
remote source positions generate a smaller number of valid estimates than positions in

close proximity to the sensors. A further cause for variations in valid frame numbers is
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Results for Empirical Detection Test

Speaker LI Localization TDOA Localization DOA Localization

Location valid mean std |valid mean std |valid mean std

) ) || @) Gy () em)| () () () (em)| () (o) (m) (em)
(0.25,1.00,1.08)| 22 (0.46,0.97,1.15) 11.9| 35 (0.45,0.98,1.15) 15.2| 36 (0.45,0.99,1.15) 15.1
(0.25,2.00,1.08)|| 29 (0.46,1.72,1.19) 13.8| 38 (0.47,1.78,1.19) 27.1| 38 (0.47,1.79,1.19) 27.1
(0.25,3.00,1.08)|| 15 (0.46,2.48,1.22) 22.3| 22 (0.49,2.56,1.26) 32.6| 22 (0.49,2.56,1.26) 32.6
(0.75,1.00,1.08)|| 39 (0.87,1.01,1.14) 4.3 | 49 (0.86,1.02,1.13) 6.8 | 50 (0.86,1.03,1.13) 3.1
(0.75,2.00,1.08)|| 43 (0.87,1.77,1.19) 9.2 | 53 (0.86,1.79,1.18) 9.3 | 53 (0.86,1.80,1.18) 9.3
(0.75,3.00,1.08)|| 22 (0.88,2.50,1.22) 16.0| 32 (0.87,2.50,1.22) 17.7| 32 (0.87,2.51,1.22) 17.6
(1.25,1.00,1.08)| 62 (1.24,1.04,1.13) 4.2 | 67 (1.25,1.04,1.14) 7.5 | 67 (1.25,1.06,1.14) 7.4
(1.25,2.00,1.08)| 45 (1.24,1.81,1.19) 9.4 | 56 (1.24,1.82,1.19) 7.8 | 56 (1.24,1.83,1.19) 7.7
(1.25,3.00,1.08)| 31 (1.24,2.58,1.23) 17.4| 36 (1.24,2.63,1.22) 23.5| 36 (1.24,2.63,1.22) 23.4
(1.75,1.00,1.58)|| 60 (1.76,1.04,1.59) 2.5 | 64 (1.76,1.03,1.59) 2.4 | 64 (1.76,1.05,1.59) 2.4
(1.75,2.00,1.58)|| 46 (1.77,1.82,1.61) 11.2| 56 (1.77,1.85,1.61) 7.2 | 56 (1.77,1.86,1.61) 7.2
(1.75,3.00,1.58)|| 31 (1.75,2.49,1.63) 16.6| 41 (1.76,2.56,1.63) 15.4| 42 (1.75,2.52,1.61) 37.7
(2.25,1.00,1.58)|| 38 (2.17,1.01,1.57) 4.0 | 46 (2.18,1.02,1.57) 3.5 | 46 (2.17,1.03,1.57) 34
(2.25,2.00,1.58)|| 34 (2.14,1.76,1.60) 10.2 | 41 (2.14,1.78,1.59) 16.0| 41 (2.14,1.79,1.59) 16.0
(2.25,3.00,1.58)|| 25 (2.12,2.42,1.62) 12.7| 38 (2.07,2.35,1.65) 51.2| 38 (2.07,2.36,1.65) 50.9
(2.75,1.00,1.58)|| 19 (2.50,0.92,1.56) 9.8 | 27 (2.53,0.95,1.56) 9.1 | 28 (2.52,0.96,1.56) 9.6
(2.75,2.00,1.58)|| 23 (2.53,1.67,1.59) 21.3| 27 (2.57,1.79,1.60) 30.4| 28 (2.54,1.75,1.61) 41.5
(2.75,3.00,1.58)|| 20 (2.52,2.39,1.62) 30.8| 26 (2.56,2.52,1.62) 26.1| 26 (2.56,2.52,1.62) 26.0

Table 9.2: Bilinear Array Experiment #1: Numerical comparison of location estimates
detected with the empirical detection test. For each of the three location estimators (LI,
TDOA, and DOA) plotted in Figure 9.3, the number of valid frames is given for each speaker
location along with the mean location and total standard deviation of the estimated cluster.

the the localization procedure employed. The three valid TDOA-estimate-pair minimum
imposed as a prerequisite for performing LI localization eliminates a number of analysis
frames from contention as potential LI estimates. The TDOA restrictions for the TDOA-
and DOA-based search procedures are less stringent and thus many frames not considered
by the LI procedure produce acceptable TDOA and DOA location estimates. Additionally,
with some frames the LI estimation is performed and the result deemed non-valid by the
detection test, but the search-based locators succeed in finding a valid location. Finally,
the particular detection test utilized has a primary effect on the number of valid frames

detected. As Figure 9.3 illustrates, there is significant deviation in the quantity and quality
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of location estimates accepted by the two detection schemes. The statistically oriented
source consistency test is inclined to accept fewer location estimates than its empirical-
based counterpart. Exceptions to this rule occur for the off-broadside conditions (x=.25m
and x=2.75m) where the bearing angle deviation employed by the empirical detection test
tends to be increasingly severe and the detection test more discriminating as the source
approaches an end-fire position relative to the linear array.

Each of the localization schemes exhibits some degree of range bias in its estimates.
This tendency to underestimate a source’s distance from the bilinear array was apparent
in the simulations conducted in Sections 3.5 and 7.3 and found to progress as the precision
of the TDOA estimates decreased and the source’s range was expanded its bearing moved
further from broadside. Each of these effects is evident in the results of this experiment.
The broadside, close-range sources display very little range bias while off-broadside, remote
positions possess a significant shift towards the array center, as much as .5m in the worst
cases. In addition to the range bias inherent in a source’s actual location, this detrimental
result is exacerbated by the lower SNR and less accurate TDOA estimates that accompany
the more distant sources. It is feasible that this systematic disparity in range measurements
could be calculated as a function of the estimated location and the TDOA variances. It
would then be possible to correct the location estimate in those instances where the range
figure was critical. However, it should also be remarked that this bias is a consequence of the
array-enclosure geometry. A more general placement of sensor-pairs within the enclosure
(e.g. microphone groups on several different walls) would improve this situation and increase
the overall accuracy of the location estimates within the enclosure as a whole. The dramatic
dependence of localization error upon sensor placement has been presented in evaluations #1

and #2 of Section 5.4.
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Each of the detection tests displays a distinct behavior with regard to the accepted
location estimates. While, on average, validating fewer locations, the source consistency
test produces estimate clusters which are significantly larger than those created by the
empirical detection test. The empirical test clearly yields superior detection performance
for each of the localization procedures evaluated. The use of an error-spread detection
criterion rather than a statistical test appears to offer a clear advantage in this practical
scenario. The lackluster product of the source-consistency test may be attributed, in part,
to the inaccuracy of the statistical assumptions made regarding the nature of the TDOA
estimates.

A relative performance comparison of the localization schemes is less straightforward.
Referring to the empirical detection test data of Table 9.2, of the three procedures, the
closed-form LI locator has the smallest cluster total standard deviation for 11 of the 18
speaker locations. However, this is at the expense of markedly fewer valid frames. In
some cases, the search-based methods may detect up to 50% more frames. Comparing
the TDOA and DOA estimators alone, with their nearly identical valid frame numbers,
the DOA scheme achieves a smaller cluster size in nine instances, the TDOA method is
better in three, and the remaining six locations result in a tie. The DOA procedure appears
to possess a very slight advantage in cluster mean location as well. Overall, the closed-
form LI localization procedure demonstrates performance characteristics just mildly less
desirable than those of the more costly, search-based methods. For those situations, where
the additional computational expense is unwarranted, use of the LI method will not incur
significantly inferior results. When one of the search-based methods is required, the DOA-
based procedure appears to narrowly surpass the TDOA-based alternative.

Finally, the predicted error region associated with the location estimates is analyzed.
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Figure 9.4: Bilinear Array Experiment #1: Experimental cluster and predicted error re-
gion. The top graph is an overhead view of the location estimates produced by the DOA
localization procedure and validated using the empirical detection test. The bottom graph
shows the principal component vectors of the predicted covariance matrices calculated via
the median TDOA variance figures and scaled to 2.5 standard deviations.
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The predicted-error region is a function of the source estimate, the sensor-pair positions,
and the TDOA variances. Because the TDOA variances fluctuate from frame to frame, it is
difficult to compute a predicted error region indicative of the source location throughout the
entire utterance. The approach taken here will be to use the median of the TDOA variances
for the valid frames at a particular speaker position. Figure 9.4 shows overhead views of
the experimental cluster and the predicted error regions calculated via the median TDOA
variance figures. The top graph in the figure plots the location estimates produced by the
DOA localization procedure and validated using the empirical detection test. The bottom
graph shows the principal component vectors of the predicted covariance matrices scaled to
2.5 standard deviations. As the plots illustrate, the predicted error regions closely model
the experimental clusters in both orientation and extent. The largest deviations between
experiment and theory occur at the remote locations. Part of this disparity is due to the
empirical detection test which presumably eliminates the more extreme points in the top

graph because they fail to satisfy the bearing error threshold.

9.2.2 Experiment #2: Multi-Talkers

In Section 8.4.2 the proposed TDOA estimator was applied to the case of two simultaneous
and continuous-speech sources. The detection statistic associated with the TDOA estimator
was shown to effectively identify those frames in which a single source contributes predom-
inant energy and the subsequent TDOA estimate is a valid representation of that source’s
true TDOA. Here the experiment presented in that section is taken a step further and the
locations of the individual talkers are evaluated. Again, three recordings were taken. The
first two recordings were each done with distinct fixed sources while the third repeated the

same two utterances simultaneously. The content of these utterances is identical in pat-
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Talker #1 (Number of Valid Frames: 66)

Talker #2 (Number of Valid Frames: 49)
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(b) Simultaneous Talkers

Figure 9.5: Bilinear Array Experiment #2: Multi-Talkers. The top two graphs illustrate
the valid x, y, and z-positions for each of the individual recordings as functions of time.
The lower graph presents the location estimates for the simultaneous recording. The single

talker positions are replotted as ‘.” while the simultaneous location estimates are given by

‘o’.

tern and speed to those employed in Section 8.4.2 and once again represents a particularly
extreme two-talker case with significant periods of signal overlap.

The results of this experiment are presented in Figures 9.5 and 9.6. The first of these
figures illustrates the valid x, y, and z-positions as functions of time. These estimates were
generated using the DOA localization method and the empirical detection test. The top

two plots represent the individual recordings and their respective location data. Note that
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(b) Simultaneous Talkers

Figure 9.6: Bilinear Array Experiment #2: 3-dimensional scatter plots of the position versus
time data of Figure 9.5. The top graph presents the results of the two individual recordings
and the lower graph shows the simultaneous situation. In each case, the 3-dimensional
location is denoted by ‘*” and a ‘.” is used to show the orthogonal projection of the location
onto the respective planes.
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in each case the positions remain nearly constant throughout the utterances, indicating
fixed sources. For each of these two-second recordings, the signals were segmented into
155 analysis frames. Talker #1 possessed 66 valid frames, and talker #2 had 49 valid
frames. The lower graph in the figure illustrates the same information for the simultaneous

recording. The single talker positions are replotted as ‘.’

while the simultaneous location
estimates are given by ‘o’. This time 52 valid frames were detected. Once again, as in
the case of the TDOA estimation, the algorithm is correctly able to discriminate periods of
single-source activity from multi-source intervals. The location estimates achieved clearly
demonstrates the two-party nature of the received signal. Despite the overlapping nature of
the signals, a significant fraction of each of the valid individual estimates are preserved in
the simultaneous recording. Figure 9.6 contains 3-dimensional scatter plots of the position
versus time data of Figure 9.5. The top graph presents the results of the two individual
recordings and the lower graph shows the simultaneous situation. In each case, the 3-

dimensional location is denoted by ‘*’ and a ‘.’

is used to show the orthogonal projection of
the location onto the respective planes. Two distinct sources are evident in these graphs.

Each is approximately 1.75m from the array. Talker #1 is in front of the extreme left

sensors at a height of 1.60m and Talker #2 is at the right edge of the array at height 1.20m.

9.2.3 Experiment #3: Moving Talkers

With a 25.6ms analysis window and the ability to generate independent location estimates
on the order of 70 times per second, the localization algorithms presented here are appropri-
ate for tracking moving speech sources. As a result of the short analysis interval, a source’s
change of location within the estimation period is insubstantial and has minimal impact on

the precision of the calculated delays and derived location. The high update rate allows

138



Talker Moving Normal to Array Axis (Number of Valid Frames: 34)
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Figure 9.7: Bilinear Array Experiment #3: Talker Moving Normal to Array Axis. The top
graph contains plots the signal received at a single microphone as well as the valid x-, y-,

and z-positions of the moving source as a function of time. The lower graph presents the

localization data in 3-dimensional scatter plot. A “*” denotes the location estimates while

a ‘.7 is used to show the orthogonal projection of the location onto the respective planes.

for near continuous localization of even the most rapidly moving sources in a typical talker
scenario.

Figures 9.7 through 9.10 illustrate the ability of the location algorithm to track a
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Talker Moving Parallel to Array Axis (Number of Valid Frames: 51)
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Figure 9.8: Bilinear Array Experiment #3: Talker Moving Parallel to Array Axis. The top
graph contains plots the signal received at a single microphone as well as the valid x-, y-,
and z-positions of the moving source as a function of time. The lower graph presents the

localization data in 3-dimensional scatter plot. A “*” denotes the location estimates while

a ‘.7 is used to show the orthogonal projection of the location onto the respective planes.

moving talker. In each of these examples, a talker spoke the phrase “One Two Three Four”
with varying degrees of loudness while walking in a number of directions relative to the

bilinear array. Location estimation was performed for each of the three-second (60,000
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Talker Moving Diagonally (Number of Valid Frames: 26)
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Figure 9.9: Bilinear Array Experiment #3: Talker Moving Diagonally Across Array Axis.
The top graph contains plots the signal received at a single microphone as well as the valid
x-, y-, and z-positions of the moving source as a function of time. The lower graph presents
the localization data in 3-dimensional scatter plot. A ‘*’ denotes the location estimates
while a ¢
planes.

is used to show the orthogonal projection of the location onto the respective
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Moving and Stationary Talkers (Number of Valid Frames: 63)
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Figure 9.10: Bilinear Array Experiment #3: Moving and Fixed Talkers. The top graph
contains plots the signal received at a single microphone as well as the valid x-, y-, and
z-positions of the moving and fixed sources as a function of time. The lower graph presents
the localization data in 3-dimensional scatter plot. A ‘*’ denotes the location estimates
[

while a is used to show the orthogonal projection of the location onto the respective

planes.
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sample) recordings. The figures display the valid results obtained from the DOA-based
locator with the empirical detection test. The top graph in each case shows the time signal
received at a single microphone along with the x-, y-, and z-positions of the valid locations as
functions of time. The lower graphs contain 3-dimensional scatter plots of this same location

“*’ and a ‘.’ is used to

information. Once again, the locations themselves are plotted with
denote their projections onto the back planes. Figure 9.7 presents a source moving towards
the sensors in a direction normal to the array axis. Note the relative consistency of the x-
and z-positions as the y value steadily decreases. While there was no mechanism available to
accurately determine the exact path traversed by the talker, the smooth, nearly linear path
detected by the locator certainly suggests the algorithm was performing accurately. For this
particular recording, the talker was speaking quite softly and as the time signal indicates,
the signal to noise ratio at this microphone is relatively poor. The SNR condition results
in fewer valid locations, 34 out of 233 analysis frames, and reduced estimate accuracy. The
source displayed in Figure 9.8 was recorded while moving parallel to the array. A moderate
speech volume produced 51 valid estimate frames which are manifested in the graph as a
smooth upward transition in the x-position throughout the course of the utterance. The
third case, presented in Figure 9.9, was done with the talker walking inward, diagonally
across the array. For the 26 valid estimates detected, both the x- and y-positions may be
seen to slowly decrease over the three-second interval.

With each recording the y-position parameter displays a noticeable deviation from the
linear nature that would be expected for these source motions. The x- and z-estimates are
less sensitive in this regard. This behavior is consistent with the results of experiment #1 in

which the range estimate was shown to possess the bulk of the error inherent in localization

with the bilinear array. For these experiments, the range component contributes primarily
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to the y-position value.

The last example, Figure 9.10, repeats the scenario of a source moving normal to the
array, but this time a second, fixed source has been included as well. As a whole the
estimates reveal a distinct two-source situation with one source appearing to be moving
in a continuous fashion while the other is relatively stationary. However, if taken in iso-
lation, these location values may be the source of reasonable confusion. In practice, the
product provided by these algorithms may be combined with single and multi-source track-
ing schemes to follow and discriminate individual talkers in a multi-party environment.
To achieve these results many tracking techniques may be adapted from sonar and radar
applications [27, 87, 88, 89]. One important distinction between this situation and the
radar/sonar scenarios is the source-motion model employed. The latter may assume that
tracked elements are constrained to roughly linear motion with limited acceleration poten-
tial. Furthermore, because these methods are usually active or rely on a continuous source
signal, location updates are available on a regular basis. However, for a typical multi-talker
situation, location information is evaluated only when a particular source is speaking. These
periods may be well separated. This difficulty is compounded by the fact that talker mo-
tion is subject to a variety of discontinuities, necessitating the use of a much more general
source-motion model. A general model, Kalman filter approach to tracking a single speech
source was explored in [90]. The multi-source problem is significantly more complicated,
and, in addition to more sophisticated tracking methods, may benefit tremendously from
the incorporation of speaker identification procedures applied to the received microphone

signals [91].
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9.3 A Multi-Unit Conferencing Array System

The second set of experiments was performed with a multi-unit array placed within a
conference room. The room is 4m X 7m with a carpeted floor and an acoustically tiled
ceiling at a height of 2.75m. Four full-length windows are found along one of the side
walls while the door is located opposite. Acoustic partitions have been hung in the space
remaining along each of the side walls. One of the end walls consists of a white-board
attached to painted concrete block. The other is untreated plaster with no obstructions.
The primary feature of the room is a 4m Formica conference table. The table is slightly
oblong, .95m in width at the ends and 1.20m at the center, and at a height of .7m. The
enclosure is well-insulated from background noise and possesses a reverberation time of
approximately 300ms.

The 14 microphones were partitioned among three autonomous array units: the main
array consisting of six microphones in a rectangular arrangement and two remote arrays each
with four microphones forming orthogonal pairs. The main and remote array structures are
displayed in Figure 9.11. The arrays were designed for their portability, effectiveness, and
adaptability. In each case, the pressure-gradient microphones were mounted into rubber
grommets and placed within two parallel tracks made of stretched rubber ‘o’ rings. This
arrangement allowed for free motion of the microphone along the line of constraint while
acoustically decoupling the sensor from the array structure. The rubber ‘0’ ring tracks were
affixed to 15cm screws drilled into a panel of aluminum which was in turn, attached to
a tripod. Finally, a portion of the space between the microphones and metal backplane
was filled with 10cm acoustic foam designed to prevent direct back-reflections while leaving
open space behind the sensors, a requirement for nominal pressure-gradient microphone

operation. In the experiments that follow, the microphone spacings were set at .25m. With
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Figure 9.11: Multi-Unit Conference Array System: Diagrams of the main and remote arrays
used for the experiments. The photo represents the main array.

the six-element main array, four sensor pairs were defined as the diagonal elements of the
two square units, yielding a sensor-pair separation of .25v/2m in each case. The remote
arrays consisted of two sensor pairs apiece, each with a .25m separation.

The main array was positioned at one end of the conference table, Im from the end

wall and facing the participants. The two remote arrays were placed at the midpoint of the
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Remote Array

Conference Table

Figure 9.12: Multi-Unit Conference Array System: Photo of the conference room and the
three array setup.

room, abutting the side walls, and facing the conference table. The two remote arrays were
centered at a height of 1.58m, approximately standing height, while the main array was
placed at a height of 1.27m to accommodate seated participants. This heuristic choice of
array positions was guided by the intent to provide a general coverage of the area surround-
ing the conference table given the three array units and the practical restrictions of the
room. All of these positioning measurements were done by hand using an ultrasonic mea-
suring device. and are subject to limited accuracy, on the order of centimeters. Figure 9.12

presents a photo of the conference room along with the three array units.
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Figure 9.13: Multi-Unit Conference Array System: Experiment #1. Location estimates.
generated using the DOA localization procedure and validated by the empirical detection
test. The top plot presents an overhead view of the room with the table and arrays shaded
and the individual speaker positions indicated by rectangular boxes. The lower plot presents
the same data from the perspective of the wall behind the main array. The location esti-
mates produced by the nine two-second recordings are plotted with a ‘“*’ symbol and their

orthogonal projections are denoted by a “.” on the respective walls.
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Figure 9.14: Multi-Unit Conference Array System: Experiment #1 Predicted Error Region.
The principal component vectors of the predicted covariance matrices calculated via the
median TDOA variance figures and scaled to 2.5 standard deviations. The top plot presents
an overhead view while the lower graph provides a front-wall perspective.
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9.3.1 Experiment #1: A Source Grid

The first experiment performed with the Conferencing Array System involved localization
of sources at fixed positions around the conference table. The design is similar to that of
the experiments presented in Section 9.2.1. A two-second phrase was simultaneously played
through a speaker and recorded by the 14 microphones. The utterance itself, as well as
the playback and recording levels, were identical to those of the earlier experiment. The
peak SNR levels again varied from approximately 5 to 30dB, depending on the speaker’s
location and orientation relative to a particular microphone. The loudspeaker locations were
selected in an attempt to emulate a true video-conference scenario, being placed at .75m
intervals along the length of the table with one placed at the head. This resulted in nine
distinct locations, four symmetrically placed on either side. In each case the loudspeaker
was oriented towards the main array at the end of the table where the camera/video display
would presumably be found. Because of the midline symmetry of the array/room setup,
two specific source heights were adopted. For one side of the table, the loudspeaker was
placed at 1.58m to simulate standing sources and with the other side, a height of 1.15m was
utilized, corresponding to a seated talker.

Some partial results of this experiment are presented in Figure 9.13. These graphs were
generated using the DOA location estimates validated by the empirical-detection test. The
top plot is an overhead view of the room with the table and arrays shaded and the individual
speaker positions indicated by rectangular boxes. The location estimates produced by the

[4

nine two-second recordings are plotted with a ‘*’ symbol and their orthogonal projections

[

are denoted by a ‘.” on the respective walls. The lower plot presents the same data from
the perspective of the wall behind the main array. Height information is apparent in this

second plot. The locations on the right side are seated while those on the left side and at
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the head of the table are standing.

The predicted error regions associated with each of these source positions relative to
the array geometry are illustrated in Figure 9.14. The principal component vectors were
generated in the same fashion as those of Figure 9.4. Specifically, the TDOA variances
required for the error region estimate have been calculated from the median of the valid
frame variance figures at each speaker position and the principal components displayed have
been scaled by 2.5 standard deviations. The top plot in Figure 9.14 represents an overhead
view of the predicted error region principal components while the lower graph provides a
front-wall perspective.

As an initial observation, the estimate clusters of Figure 9.13 and their predicted error
regions in Figure 9.14 appear to approximately agree in orientation and extent. On the
whole, the location estimates of this section possess significantly smaller and less eccentric
error regions than those results obtained with a similar experiment employing the Bilinear
Array (Figure 9.3). This is a byproduct of the more robust placement of microphones
throughout the source region and is consistent with the simulations conducted in Section 5.4.
The localization-error region clearly benefits from the more uniform sensor positioning.
However, relative to the earlier experiment the quantity of valid detection estimates for this
two-second utterance has been reduced dramatically. In the present case, the number of
valid estimates detected by the DOA and TDOA localization schemes for the nine source
locations was found to range between 5 and 36 out of a total of 155 analysis frames. With
the LI localization scheme, this value peaked at 29 and was as little as 2. Referring to
Table 9.2, for the experiment conducted in Section 9.2.1 equivalent valid frame numbers
span from 22 to 67 frames for the TDOA/DOA schemes and 15 to 62 for the closed-form

LI method. Given that the content and playback conditions of the spoken utterance were
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identical in each scenario, several practical factors may be responsible for this disparity. The
conferencing array system employs a significantly larger room than the bilinear array system
and accordingly, worst case source to microphone distances are greater in the former case.
This increased distance results in a reduced signal SNR due to propagation attenuation.
Loudspeaker orientation may also be responsible in part for the reduced number of detected
TDOA and location estimates. Each recording was produced with the loudspeaker situated
facing the front array. As Figure 9.13 indicates, for several locations microphones on the
remote arrays are situated off-angle to the direct source radiation path and may receive
a distorted version of the source signal. The effects of source orientation on radiation
pattern have been investigated in [92, 93]. This situation is compounded by the reception
characteristics of the microphones themselves. The pressure-gradient microphones employed
here have a cardioid directivity designed to attenuate off-angle sources. While this may be a
useful feature for reducing the contribution of noise sources outside the desired source-field,
it is detrimental to the signal quality of several sources in the conference array system.
Overall, these arguments highlight a general tradeoff between the increased location
accuracy obtained via the multi-unit array at the expense of the frequency of valid estimates.
The selection of an array geometry is dependent upon the application in mind. In this
instance, achieving a small overall location error was the priority. With other scenarios,
room restrictions may prevent an unconstrained placement of sensors. If range information
is considered unimportant, the single bilinear array would be quite effective for providing

bearing-only estimates.

152



Four-Talker Conference Scenario (Number of Valid Frames: 100)
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Figure 9.15: Multi-Unit Conference Array System: Experiment #2. Location estimates of
the four talkers plotted as a function of time samples at 20kHz. The top graph shows the
signal received at one of the microphones. The lower three plots display the valid location
estimates along each of the three room axes as a function time samples.

9.3.2 Experiment #2: A Conference Scenario

As a final demonstration of the effectiveness of the localization methods presented in this
work, a typical conference scenario was created using four talkers. The individuals were
seated at various positions around the conference table and each asked to speak a single
sentence in turn during the course of a five-second recording. Figures 9.15 and 9.16 present
the localization results obtained. Figure 9.15 graphs the location information as a function

of the sample time index while Figure 9.16 illustrates the same data via three-dimensional
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scatter plots. As in the previous experiment, these estimates were obtained using the
combination of the DOA localization procedure and the empirical detection test.

The four individual talkers are discernible from their varying amplitude levels in the
signal plotted in Figure 9.15. The first sequential pair of talkers are seated on the left side
of the table and produce similar location estimates along the axis of the main array and
with regard to height. Their positions in the direction normal to the array clearly vary. The
situation is identical for the second talker pair. With this five-second recording 100 of the
total 354 analysis frames were identified as producing valid location estimates. The second
talker has a particularly short utterance (less than one second) and possesses a relatively
weak signal strength. Accordingly, only two valid frames associated with this talker were
determined.

From the scatter plots in Figure 9.16, four estimate clusters are apparent. The two at
the far end of the table, opposite the main array, are notable in that both talkers appear
to be leaning over the conference table. In one case a number of valid locations have been
detected, but several outliers are associated with the cluster. These errant estimates are due
in part to the error region inherent in the source’s location and signal content. However, a
further cause of this error may be attributed to an excessive multipath condition created
by the presence of the table. In this situation, the talker is facing the main array and
reading from a document placed on the table. Projecting downward in this manner, a
significant secondary signal is generated off of the reflective, Formica table surface. While
multipath conditions have existed in all the experiments presented in this chapter, the
form and degree of the source reflection is particularly extreme in this case. This situation
may be responsible for producing lower TDOA estimate precision than would be expected

given the SNR conditions alone and therefore reduced localization accuracy for this source.
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Despite the practical obstacles involved in translating the source localization process from
a laboratory to applied environment, the results of this experiment demonstrate that the
localization methods provide an effective means for placing and discriminating individual

talkers in a real-world conferencing scenario.

9.4 Discussion

Several experiments have been presented in this chapter to establish the utility of the
speech source localization framework detailed in this thesis. The source grid experiment
of Section 9.2.1 quantified and compared the various localization procedures, two detection
tests, and the error prediction method in the context of a laboratory-environment, bilinear
array. Sections 9.2.2 and 9.2.3 were designed to illustrate the system’s ability to distinguish
and locate multiple and moving talkers, respectively. Finally, Section 9.3 presented the
algorithms operating with an alternative array configuration in a real-world, conference-

room setting.
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Chapter 10

Conclusions and Future Work

The goal of this work has been to detail an effective system for the localization of one or
more speech sources in a real-room environment. In Chapter 2 an appropriate source-sensor
geometry was developed and forwarded as the basis for a series of localization error criteria,
means for detecting a source presence, and techniques to evaluate the accuracy of a location
estimate. Three least-squares error criteria were introduced in Chapter 3. The TDOA-
based error, Jrpoa, was shown to yield the ML estimate under Gaussian noise conditions.
However, a second criterion based upon the direction-of-arrival information, Jpo4, was
found in simulations to produce superior performance when confronted with less favorable
conditions. The third error criterion, employing a total distance measure, exhibited an
extreme estimator bias and was not considered for further development (although it is
brought up again in Chapter 7 in relation to the error criterion minimized by the closed-
form spherical interpolation (SI) locator). Chapter 4 presented three source detection tests,
two statistical and one empirical, designed for various TDOA noise scenarios. The two more
general methods, the source consistency and the empirical tests, were included into the

real-system experiments that followed. Chapter 5 contained an analysis of the error region
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associated with a location estimate. Explicit formulae were derived relating the estimation
confidence to the TDOA and sensor-pair data. These techniques were demonstrated through
simulations to accurately predict the exhibited estimation spread.

The second half of this thesis focused on the development of practical algorithms to im-
plement the source localization procedures and the evaluation of system performance in a
number of real-world experiments. Chapter 6 highlighted a number of computational issues
involved in obtaining the optimal nonlinear location estimates. Chapter 7 was devoted to
the development of a closed-form location estimator, the Linear Intersection (LI) method,
designed specifically for this application. The LI estimator was shown to generate precise
results, on par with the more burdensome nonlinear estimators and superior to those of a
representative algorithm. The closed-form solution may be used alone or as the initial guess
for the nonlinear estimator’s optimization routines. A set of time delay estimates are the
basis for each of the techniques offered in this work. In Chapter 8 a practical TDOA esti-
mator for speech sources was spotlighted. The algorithm requires minimal computational
resources to produce precise TDOA figures. Through the incorporation of a short analy-
sis window and source detection methods, it is capable of tracking moving sources as well
as identifying multi-source situations. Chapter 9 brought together each of the individual
aspects of this work through a series of experiments with real microphone array systems.
Two distinct environments and array geometries were employed for these evaluations, a
bilinear array placed along a wall of a computer laboratory and three small independent
arrays set up in a conference room. The experiments performed corroborated the results of
earlier simulations and demonstrated the effectiveness and applicability of the source local-
ization techniques advanced in this thesis for real-world scenarios. With these methods, it

was possible to detect and localize sources in 3-space to within centimeters precision, track
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moving sources reliably, identify individual talkers in multi-source scenarios, and predict
consistently the error region associated with a particular location estimate.

Along the lines of this research, there are several avenues available for future study.
First, the problem of tracking and distinguishing multiple sources given the location data
provided by these procedures was alluded to in the discussion within Chapter 9. Consid-
erable work still remains in this area for adapting existing tracking methods and creating
novel techniques appropriate for the specific application. Second, the issue of optimal sensor
placement has not been addressed substantially here. In Chapter 5 it was suggested that
the error region predictor developed there could be incorporated into some optimal means
for array design. However, for the experiments and simulations performed here the choice of
sensor placement was primarily ad hoc and guided by practical considerations and algorith-
mic constraints. Third, the estimation and correction for source orientation is an important
aspect of the talker localization problem. In the context of this work, the orientation an-
gle was effectively lumped into the larger parameter of signal SNR, but in many scenarios
knowledge of a talker’s orientation in addition to location may be vital. The research in
this area, referred to in Chapter 9, has taken important steps in characterizing source ra-
diation patterns and may eventually provide acoustic tools for assessing talker orientation
as well as other parameters. Finally, there is the practical issue of sensor calibration. For
the experiments presented here, the sensors were placed and measured by hand while the
signal processing channels (anti-aliasing filters, A/D converter, etc.) were normalized in
an informal fashion. Each of these procedures introduces a degree of imprecision into the
overall results and provides for a practical inconvenience. The development of methods to
automatically and accurately identify sensor positions as well as calibrate the acquisition

channels, will be required to facilitate the incorporation of this technology into desirable
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commercial products.
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